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ABSTRACT

PARAMETRIC STUDY OF CURVED STEEL BRIDGES

SUPPORTED ON NARROW CONCRETE PIERS

by

JASON ERIC OLSEN, MASTER OF SCIENCE IN ENGINEERING
THE UNIVERSITY OF TEXAS AT AUSTIN, 1994
SUPERVISOR: MICHAEL ENGELHARDT

This study investigates horizontally curved steel plate girder bridges
supported on narrow concrete piers as currently used by the Texas Department
of Transportation. All longitudinal girders are supported on individual bearings
at the ends of the bridge, but at the intermediate supports, the girders connect
to steel bent caps. Each bent cap is supported by a narrow concrete pier through
two bearings spaced six to twelve feet apart.

Because the bridge is not supported across its full width at the
intermediate supports, downward live loads placed on the bridge outside of the
bearings tend to increase compression in the closer bearing but tend to decrease
compression in the further bearing. Finite element analyses of some typical
bridges were conducted to determine the load placements which maximize or
minimize compression in the bearings. The results of the analyses were used to
produce simplified load patterns which can be used in the design of the bearings.

Another consequence of supporting the deck on narrow piers is that such

a support condition violates the assumptions of the V-load method, an analysis



technique for curved plate-girder bridges. Comparisons were made between
finite element analyses and V-load analyses of some typical bridges to determine
if the V-load method produces reasonably accurate girder moments and bearing
reactions when some of its assumptions are violated. The V-load method was
found to produce results which typically are no worse than a few percent
unconservative. The V-load method was also found to produce reasonable results
when the piers are offset from the centerline of the deck.

Supporting the deck on narrow piers also affects the forces in the deck’s
cross-frames. The V-load method gives reasonable estimates of the cross-frame
forces due to the resistance of the internal torsion of the curved deck and the
AASHTO equations give reasonable estimates of the cross-frame forces due to
wind load. However, the critical forces in the cross-frames result from supporting
the deck on narrow piers. A somewhat flexible bent cap, when supported by a
narrow pier at the center, will deflect at the ends, which in turn causes the nearby
cross-frames to deflect at the ends. These imposed deflections produce cross-
frame forces which can be several times larger than forces due to the resistance
of internal torsion or wind load. Deflection limits should be imposed on the

bent caps to keep the cross-frame forces below the allowable levels.
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CHAPTER 1
ANALYSIS GOALS

Introduction

This thesis presents the results of some analyses of horizontally curved
steel plate girder bridges. The typical bridge studied herein consists of a
reinforced concrete slab supported on longitudinal steel plate girders and has
three spans with span lengths between 100 and 200 feet. The girders are braced
against lateral load and torsion by steel cross-frames evenly spaced along the
length of the bridge. At the ends of the bridge each girder rests directly on a
concrete support. At intermediate supports along the length of the bridge, the
girders frame into transverse steel bent caps, which in tum are supported on
single, narrow reinforced concrete piers. The connections between the bent caps
and the piers typically consist of rocker bearings or pot bearings to provide
vertical support and rotational freedom about a transverse axis. Anchor bolts
provide resistance to any uplift arising from torsion in the bridge. A more
complete description of the bridge system is provided in Chapter 2.

The analyses presented herein were conducted primarily in the pursuit of
four goals. The first goal was to determine reaction forces and deflections at the
bearings using the finite element method. Achieving the first goal required the
pursuit of the second goal of determining loading patterns which produced

maximum bearing forces and deflections. The third goal was to verify the
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adequacy of the V-load method for determining both the behavior of the
longitudinal girders and the behavior of the bent cap and bearings. The fourth

goal was to investigate the forces developed in the cross-frames.

Bearing forces and deflections

This analytical study is part of a larger study which seeks to verify the
adequacy of current bearing designs and to develop and test new, more cost-
effective bearing designs. The primary work of this larger study is to
experimentally establish the stiffness, fatigue strength and ultimate strength of
both the current and proposed new bearing designs. Determining the capacities
of these connections, however, is only meaningful if the capacities can be
compared to reasonable estimates of the loads to which the connections will be
subjected. Thus, it is part of the first goal of this analysis portion of the project
to determine the maximum forces expected in the bearings for comparison against
the ultimate capacity of the bearings, and to determine the range of forces caused
by cyclic loading for comparison against the fatigue capacity of the bearings.

In addition to providing adequate capacity to support the loads, the
bearings are also designed to allow rotation of the longitudinal girders about a
transverse axis. Providing such rotational freedom complicates the bearing design
and increases the costs. Consequently, the new bearing designs under evaluation
have removed the physical pin in the bearing and have replaced it with a heavy
wide-flange section. To provide rotational freedom the wide-flange bearing must
deform. Since the bearing rotations are cyclic, the deformations in the wide-
flange bearing member may lead to fatigue problems. Thus, a part of the analysis

portion of this project will determine the range of bearing rotation.



Loading patterns producing maximum bearing forces

The maximum static load or the maximum range of cyclic loading on the
bearing requires the application of both dead and live loading. Once the bridge
is constructed and is in service, the distribution of dead load is constant. Live
load, on the other hand, varies continuously. Because of the T-shape of the bent
cap and pier, simply applying the maximum live load to all parts of the bridge
does not necessarily produce the largest forces in all of the bearings. As shown
in Figure 1-1, a load applied to the bent cap from the exterior girder on the right
increases the downward force on the right bearing but decreases the force on the
left bearing. Thus such a load will be included in finding the maximum
downward force for the bearing on the right but will not be included when finding
the maximum downward force for the bearing on the left. In general, to
determine when a load increases or decreases a bearing force, an influence
surface can be created. From the influence surface, loading patterns can be
selected in which the load is applied on only those areas which tend to increase
forces, thus producing the maximum force in the bearing. It is the second goal

of this project to determine these loading patterns.

Evaluation of the V-load method

Simplified analysis techniques are typically used for curved steel bridges.
The techniques involve distributing the load from the slab to the girders by
applying a fixed fraction of the total slab load to each girder. The girders are
then analyzed using an approximate technique for curved bridges called the V-
load method, which is described in Appendix C. From the V-load analysis,
reactions at the girder supports are calculated. Where the girders are supported
by a bent cap, the reactions are applied as forces on the bent cap to determine

bearing forces.
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To determine if these simplified analysis techniques provide a reasonably
accurate prediction of bearing forces, it is the third goal of this study to compare
the results of the V-load method to the results of a more sophisticated analysis
technique, namely the finite element method.

Investigation of the cross-frames

The cross-frames are provided to control the torsion that naturally results
in curved girders subjected to vertical load. The V-load method gives an estimate
of the forces applied to the cross-frames by the girders. The design of these
cross-frames, then, is based on these forces from the V-load analysis and also on
forces produced by transverse loads. The V-load method, however, ignores the
contribution of the slab to resisting torsion in the girders and thus produces an
inaccurate distribution of forces in the cross-frames. Furthermore, the flexibility
of the bent cap in bending allows the exterior girders to sag relative to the
interior girders, thus generating additional forces on adjacent cross-frames. It is
thus the fourth goal of this study to determine more accurately the forces in the

cross-frames.

Analysis method

In order to provide the most accurate analytical results possible, the bridge
systems in this study were modeled using the finite element method. A
commercially available general purpose finite element program, ANSYS, was
used in this study. Details of the finite element models developed for this study
using ANSYS are provided in Appendix A. Verification of the modeling
techniques is outlined in Appendix B, where finite element analysis results are

compared to closed form solutions for a simplified structure.



CHAPTER 2
DESCRIPTION OF THE
BRIDGE SYSTEMS

Introduction

The focus of this study was on typical horizontally curved steel bridge
systems designed by the Texas Department of Transportation (TxDOT). Three
span horizontally curved bridges with span lengths between 100 and 200 feet and
radii of curvature between 1000 and 2500 feet were investigated. The typical
bridge consists of a reinforced concrete slab, superelevated four to six percent,
supported on longitudinal steel plate girders. The girders are braced by cross-
frames evenly spaced along the length of the bridge. At the ends of the bridge
each girder rests directly on a concrete support. At intermediate supports along
the length of the bridge, the girders frame into transverse steel bent caps, which
in turn are supported on single, narrow reinforced concrete piers. Plan and

elevation views of a typical bridge are shown in Figure 2-1.

Slab details

The typical reinforced concrete slab for these bridges is from 30 to 60
feet wide and is supported on four to seven longitudinal girders. The number
of girders is such that the lateral center-to-center spacing of the girders is
between 7 feet 6 inches and 9 feet, with the slab cantilevered an additional

three feet beyond the centerlines of both the inside and outside girders. Such
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unsupported slab widths lead to slab thicknesses between 7-1/2 and 8 inches
thick over the unsupported width. Over the girders, the slab thickness is
increased to compensate for variations in top flange thickness by keeping the
distance between the top of the slab and the tops of the girder webs constant.
A typical detail of a slab is shown in Figure 2-2.

The slab is made composite with the girders over the positive moment
regions of the bridge. Shear studs are provided at two foot intervals over most
of the positive moment region with the exception of the ends of the positive
moment regions where the spacing is reduced to 1 foot or less.

The 3000 psi concrete slab is poured in five stages. The first two stages
entail placement of the concrete in the regions of the two end spans where dead
loads produce positive moments. In the third stage, the concrete is placed in
the positive moment region of the center span. Finally in the last two stages,
the concrete is placed in the two negative moment regions. The bridge is
continuous at all four construction joints with no provisions for thermal
expansion at the joints. Some bridge plans allow the contractor the option of
pouring the slab continuously, given that a minimum number of linear feet,
typically 30 feet, of slab are poured and finished per hour.

Girder details

The girders are assembled from corrosion-resistant, high-strength A588
steel (F, = 50 ksi) plates welded together to form wide flange sections. A
common web depth, typically between 48 and 66 inches, and a common flange
width, typically between 16 and 20 inches, are used for all girders of a bridge,
where the larger plate widths are used for longer span bridges. For economy,
the bending and shear strength provided by the girder is varied along the length
of the girder according to the bending and shear forces from the moment and
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shear diagrams. This is accomplished by varying the thicknesses of the flange
and web plates. The web plate thickness is typically 1/2 inch over the middle
of the spans and increases to as much as 11/16 inch over the supports. Both the
top and the bottom flange plate thicknesses are typically 1 inch over the regions
with the least moment and increase to as much as 3 inches in the most highly
stressed portions of the negative moment region and to as much as 1-1/4 inches
in the most highly stressed portions of the positive moment region. A typical
girder detail is shown in Figure 2-3.

Cross-frame details

To distribute lateral loads and to resist torsion resulting from the
curvature of the bridge, cross-frames brace the girders at intervals of 15 to 18
feet. The two end cross-frames use a standard K-brace detail as shown in
Figure 2-4. The intermediate cross-frames use a standard X-brace detail as

shown in Figure 2-5.

Bent cap details

The bent cap is assembled like the longitudinal girders from A588 plates
welded together to form a wide-flange girder. Web depth varies along the
length of the bent cap with the bent cap deepest where moment is the greatest
and shallowest where moment is the least. At the center of the caps, where
moments are the greatest, the web depth is greater than the depth of the
longitudinal girders. At the ends of the cantilevered caps, where moments are
the least, the web depth is less than the depth of the longitudinal girders. The
web plate has a constant thickness typically between 3/4 and 1-1/4 inches,
where the thicker plates are used for wider bridges. A common flange width,

typically 20 to 30 inches, is used for all flange plates, where the wider flange
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plates are typically used for wider bridges. A single top flange thickness of 2 to
2-1/4 inches is used over the full length of the bent cap. The bottom flange
consists of plates of two thicknesses. Thinner plates of 1 to 2 inches are used
at the ends of the bent cap and a thicker plate of 2-3/4 to 3 inches is used over
the center of the bent cap. A typical bent cap detail is shown in Figure 2-6.

The longitudinal girders are made continuous at the bent caps by a
combination of bolted and welded connection elements as shown in Figure 2-7.
The tops of the longitudinal girders are coped to allow the top flange of the
bent cap to pass through the tops of the webs of the longitudinal girders,
thereby retaining continuity of the bent cap. To restore continuity to the top
flanges of the longitudinal girders, plates connecting the discontinuous flanges
are bolted onto both the tops and bottoms of the top flanges. The bottom
flanges are made continuous by welding the flanges to plates which are bolted
to the web of the bent cap. The webs of the longitudinal girders are bolted to
the web of the bent cap using angles.

The bent cap is supported on two bearings spaced 6 to 12 feet apart.
Present designs place the centerline of the pier coincidental with the centerline
of the bridge, but future designs may offset the centerline of the pier from the
centerline of the bridge in cases where the layout of an interchange restricts

placement of the piers.

General bearing details

Currently two types of bearing details are in use: a rocker bearing and
a disc bearing. The bearings are designed to allow rotation of the pier cap
about an axis parallel to the axis of the bent cap, so as to approximate a pinned
support for the longitudinal girders and to minimize the transfer of transverse

moment into the concrete pier. This rotational freedom about the transverse
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axis is provided by supporting the bridge on a narrow rocker or elastomeric pad.
At the same time the bearings are designed to fix the rotation of the cap about
an axis parallel to the axis of the bridge. This rotational fixity about the
longitudinal axis is accomplished by using a wide support consisting of two
bearings spaced 6 to 12 feet apart.

In addition to providing rotational freedom and fixity as appropriate, the
bearing is designed primarily to provide vertical support. The bent cap is
supported against downward forces by resting the bottom flange of the bent cap
on the bearings which in turn rest on the concrete pier. Stiffeners are used to
prevent crippling or local yielding of the web of the bent cap at the bearing

locations.

Rocker bearing details |

A typical rocker bearing is shown in Figure 2-8. Rotational freedom
about the transverse axis is provided by a rounded machined convex bearing
surface connected to the concrete pier and the companion concave plate
connected to the bottom flange of the bent cap. Thick steel plates welded to
the bottom of the pin distribute vertical stresses from the narrow bearing surface
to the concrete pier. To provide resistance to uplift and horizontal shear, the
steel bent cap is bolted to the concrete pier by means of anchor bolts. The tops
of the anchor bolts pass through horizontal plates in the bent cap which in turn
bear on the web stiffener plates. The bottoms of the anchor bolts are fastened
to a bolt template embedded roughly three feet below the top of the pier.
Hold-down bolts also fasten the lower portion of the bearing to the bolt

template embedded in the concrete pier.
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Disc bearing details

A typical disc bearing is shown in Figure 2-9. Rotational freedom about
the transverse axis is provided by resting the bent cap on a flexible elastomeric
disc between two steel discs attached to the bottom flange of the bent cap and
to the top of the concrete pier, respectively. Horizontal shear resistance is

provided by a shear key between the steel discs.

Wide-flange bearing details

A typical wide-flange bearing is shown in Figure 2-10. This bearing
detail is currently under investigation as part of this research project. A heavy
rolled wide-flange section is used in place of the complicated bearing elements
used in the rocker and disc bearings. Such a detail should allow transverse
rotational flexibility by bending of the web of the W-section and should provide

vertical support by compression of the web.

Selection of bridge systems for analysis

The bridge systems analyzed in this study are based on actual designs
provided by TxDOT. The analyses required the variation of several bridge
parameters, such as radius of curvature, span length, and bearing spacing. In
such a parametric study, it is easiest to correlate the results of the variation of
a parameter with the variation of that parameter itself when only one parameter
is allowed to vary at a time. Because several parameters vary from the design
of one TxDOT bridge to the next, it was not feasible to use the actual TxDOT
designs in this parametric study. Rather, typical details were abstracted from
the TxDOT designs. These typical details, which have been described in this
chapter, served as a basis for generating hypothetical bridges for analysis.

In the design of actual bridges, it is typically necessary to vary member
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sizes along with particular bridge parameters. For example, increasing the span
length will necessitate increasing the girder plate thicknesses. The designer,
however, has countless ways to choose member sizes for a particular bridge. In
designing a girder over a particular span, for example, the designer may choose
to use only three different flange plate thicknesses which coarsely follow the
moment diagram, or the designer may choose to use ten different flange plate
thicknesses which follow the moment diagram more closely. The different
choices of member sizes may lead to different distributions of stiffness in the
bridge. As a result, when member sizes are varied simultaneously with the
parameter under inspection, the results may be unduly affected by the particular
choice of member sizes rather than simply being affect by the variation of the
parameter. To avoid this problem, member sizes were not varied along with the

parameters.



CHAPTER 3
MAXIMUM FORCES AND ROTATIONS
AT THE BEARINGS

Introduction

The critical reactions and deformations in the bearings are the vertical
forces, either compression or uplift, and the rotations about a transverse axis.
This analysis seeks to determine the range and maximum values of these forces
and rotations.

The typical bridge has multiple spans and portions of the bridge are
cantilevered from single piers at the interior support locations. Consequently,
the live load may increase or decrease the compression in a given bearing
depending on the location of the load. Likewise, the location of the load can
affect the direction of the rotation at a given bearing. To determine how to
place the load so as to maximize or minimize compression in a bearing or to
maximize rotation in one direction or the other, influence surfaces can be
created.

An influence surface is a three-dimensional contour plot of the
magnitude of some response parameter, such as bearing force or rotation,
projected over the surface of the bridge. The magnitude of the response
parameter at a given point on the influence surface corresponds to the response
that would result from applying a unit load at that point on the surface of the
bridge. For design purposes the information provided by this three-dimensional

22
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plot is typically more information than is necessary. For example, when the
loading consists of a single concentrated load on the bridge, it is sufficient to
know simply the two locations where the load produces the greatest positive and
the least negative response. When the loading consists of a surface load, it is
sufficient to know simply the sign of the parameter over the surface — whether
the load applied at a given point on the surface contributes positively or
negatively to the response — and not the actual magnitude of the response. Such
are the loadings for bridges, where the loads are either small clusters of
concentrated loads representing a single truck or surface loads representing lane
loads. Consequently, rather than presenting three-dimensional contour plots,
the influence surfaces will be presented as two-dimensional plots of the bridge
surface indicating the two points where concentrated loads produce the peak
positive and negative responses and indicating the areas over which surface
loads would contribute positively or negatively to the response. All influence
surfaces were developed using finite element models of bridges as described in
Appendix A.

AASHTO [1] specifies two types of live loads, namely truck loads and
lane loads. For the HS20-44 class of loading used for bridges exposed to heavy
truck traffic, the truck load consists of six concentrated loads totaling 72 kips
spaced to correspond to the wheels of a typical tractor truck with a semitrailer.
The lane load consists of a uniform load over a 10 foot width of 640 pounds per
linear foot and, in the case of multiple spans, either two concentrated loads of
18 kips each for determining the maximum negative moment, a single
concentrated load of 18 kips for determining the maximum positive moment, or
a single concentrated load of 26 kips for determining the maximum shear,
placed so as to maximize the respective stress. For both truck and lane loads,

the loads are placed in design lanes 12 feet wide spread across the full width of
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the bridge from curb to curb. The traffic lanes are placed on the bridge, and

the loads are placed within the individual traffic lanes, so as to maximize the
stress in the member under consideration. Any fractional lane widths remaining
after the lanes are spread across the bridge are not used. Only a single truck
is placed in each lane of the bridge whereas the lane load can be applied either
continuously or discontinuously over the full length of the bridge. For three or
more lanes of traffic live load reduction factors are permitted.

The truck loads are intended essentially to produce maximum shears and
moments in the girders of short spans. In long spans, lane loads usually control
for shear and moment. Moreover, lane loads also usually control for bearing
reactions. Consider a three span continuous bridge with spans of 150 feet each.
A 72 kip truck load concentrated over a support produces a maximum vertical
reaction of only 72 kips, whereas a 640 pound per foot lane load over two
adjacent spans produces a maximum vertical reaction of 115.2 kips. Thus, to
produce the maximum compression or uplift in a bearing, lane loads rather than
truck loads should be applied on all regions of the bridge where those loads

maximize the compression or uplift.

Influence surface for vertical reactions

A sample three-span, five-girder bridge is used to illustrate the typical
shape of the influence surface for the vertical reactions at the bearings. The
first sample bridge has a radius of curvature of 2000 feet and has symmetric
span lengths of 150 feet — 180 feet — 150 feet. To determine whether the
curvature of the bridge affects the influence surface substantially, the second
bridge has only half the radius of curvature of the first bridge but also has
symmetric span lengths. To determine whether differences in span length affect
the influence surface, the third bridge uses asymmetric span lengths of 120 feet
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— 210 feet — 150 feet but retains the original radius of curvature of 2000 feet.
The first sample bridge has a radius of curvature of 2000 feet and span
lengths of 150 feet for each end span and 180 feet for the center span. The
influence map for the vertical reaction in bearing #1, an interior bearing, is
shown in Figure 3-1 and the influence map for the vertical reaction in bearing
#2, an exterior bearing, is shown in Figure 3-2. As might be expected, placing
a concentrated load at the innermost edge of the bridge at the cross-section of
the bearing produces the greatest compression in the interior bearing while
placing a concentrated load at the outermost edge at about the same cross-
section produces the greatest uplift in that bearing. Also as might be expected,
the converse is true for the exterior bearing. As for the lane loads, however,
- placement might not be so obvious. It might be believed that placing lane loads
in all lanes and along the full length of the bridge produces the greatest bearing
reactions. Such a loading pattern certainly produces the greatest total
compression in all of the bearings summed together. For an individual bearing,
however, the load over part of the area of the bridge produces compression in
the bearing while the load on the remaining area produces uplift, so loading the
entire bridge produces a lesser reaction than would be produced if the load
were applied only over the area contributing to compression in the bearing.
For the two spans on either side of the bearing, the line demarcating the
areas over which loads produce compression and the areas over which loads
produce uplift follows roughly the centerline of the bearings where the area
leading to compression bulges slightly over the centerline. Thus, in these two
spans when using an analysis method which analyzes the girders individually,
such as the V-load method, it would be convenient to load the interior and
center girders to produce maximum compression in the interior bearing and to

load the exterior girders to produce maximum uplift in the interior bearing.
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Likewise, it would be convenient to load the exterior and center girders to
produce maximum compression in the exterior bearing and to load the interior
girders to produce maximum uplift in the exterior bearing.

In the far span not adjacent to the bearings, however, the loading pattern
is more complicated. The pattern for the other two spans continues for a short
distance into the third span, but then the pattern switches so that it roughly
mirrors the original load pattern from the first two spans. This situation is
analogous to a three-span continuous girder where uniform loads can be placed
on each span. As shown in Figure 3-3, loading the spans adjacent to a bearing
puts the bearing into compression whereas loading the far span puts the bearing
into uplift. It should be added, however, that the contribution of the load in the
far span to the reaction in a bearing is typically very small compared to the
contributions from the adjacent spans —usually loading the far span changes the
reaction in a bearing by less than two percent. Figure 3-4 shows the three
dimensional plot of the same influence surface shown in Figure 3-1. As the
figure shows, forces in the far span from bearing #1 contribute very little to the
reaction in bearing #1. Thus, it may be sufficient to disregard the contribution
of loads in the far span and load only the adjacent spans to produce the worst-
case compression and uplift reactions in a bearing.

Figures 3-5 and 3-6 show the influence surfaces when the radius of
curvature of the bridge is halved. The locations for the concentrated loads have
not changed, nor have the surface load patterns in the two spans adjacent to the
bearings under consideration. Slight changes appear in the far span, but again,
the loads in the far span do not significantly affect the bearing reactions.

Figures 3-7 and 3-8 show the influence surfaces when the span lengths
are made asymmetric. The surface load patterns have not changed appreciably,

but the locations for the two concentrated loads have moved slightly.
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Influence surface for rotations about a transverse axis

A sample three-span, five-girder bridge is also used to illustrate the
typical shape of the influence surface for the rotation about a transverse axis at
the bearings. Like before, the first sample bridge has a radius of curvature of
2000 feet and has symmetric span lengths of 150 feet — 180 feet — 150 feet.
To determine whether the curvature of the bridge affects the influence surface
substantially, the second bridge has only half the radius of curvature of the first
bridge but also has symmetric span lengths. To determine whether differences
in span length affect the influence surface, the third bridge uses asymmetric
span lengths of 120 feet — 210 feet — 150 feet but retains the original radius of
curvature of 2000 feet.

The first sample bridge has a radius of curvature of 2000 feet and span
lengths of 150 feet for each end span and 180 feet for the center span. The
influence map for the rotation about a transverse axis at bearing #1, an interior
bearing, is shown in Figure 3-9 and the influence map for the rotation about a
transverse axis at bearing #2, an exterior bearing, is shown in Figure 3-10. As
might be expected, all of the loads placed in the end span adjacent to bearings
#1 and #2 tend to rotate the bearings such that the end span deflects
downward while the center span deflects upward, and likewise, all of the loads
placed in the center span tend to rotate the bearings such that the center span
deflects downward while the end span deflects upward. As for the loads in the
far end span, loads over some areas of the far span tend to rotate the bearings
in one direction while loads over other areas of the far span tend to rotate the
bearings in the opposite direction. If each girder is individually supported by
the bearings at the piers, all of the loads in the far span tend to rotate the
bearings such that the end span deflects downward while the center span

deflects upward. Because the bent cap is supported by only two closely-spaced
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bearings, however, the exact shapes of these influence areas depends on the
stiffness of the bent cap-support system. As with the influence of loads applied
to the far span on the vertical reactions in the bearings, however, the influence
of the loads applied to the far span is negligible — less than ten percent of the
influence of the loads applied to the two adjacent spans — on the rotation in the

bearings.

Effect of offsetting the pier from the centerline of the bridge

When the pier is offset from the centerline of the bridge, the same
general properties appear in the influence surfaces as when the piers are
centered beneath the bridge. For the two spans on either side of a bearing, the
line demarcating the areas over which loads produce compression and the areas
over which loads produce uplift in that bearing follows roughly the centerline
of the bearings where the area leading to compression bulges slightly over the
centerline. To show this, the piers of the 2000 foot radius bridge were moved
outward six feet. The influence surfaces for the interior and exterior bearing

reactions are shown in Figures 3-11 and 3-12, respectively.

Design Recommendations: maximum reactions and rotations

Influence surfaces for bearing reactions and rotations were developed for
a variety of cases, such as those discussed in the previous sections. From these
analyses simplified influence surfaces were developed. Boundaries of the exact
influence surfaces were simplified, and portions of the influence surfaces that
have only a minor effect on bearing reaction or rotation were eliminated. In
general it is anticipated the bearing reactions and rotations computed in the
finite element model using the simplified influence surfaces will be within five

percent of the values based on the exact influence surfaces.
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Figures 3-13 through 3-16 show the simplified influence surfaces for the
reactions in the bearings. Figure 3-17 and 3-18 show the influence surfaces for

the rotations in the bearings.

Typical results of Analysis

The influence surfaces previously described were applied to an existing
TxDOT bridge. The bridge is a seven girder 548 foot long plate girder bridge.
The bridge has three spans of 160 feet, 208 feet, and 180 feet in length. The
bridge has a radius of curvature of 1910 feet. The range of bearing forces was
calculated for the bearings at the support between the 208 foot and 180 foot
spans. The maximum upward force produced by the live load never exceeded
the downward force produced by the dead load, so uplift never occurred. The
range of downward forces in the bearings is shown in Table 3-1.

Table 3-1: Range of bearing forces

downward force downward force
Interior bearing 557 kips 1342 kips
Exterior bearing 689 kips 1496 kips

The rotations at the bearings are shown in Table 3-2. Rotations are considered
positive when the deck rotates downward toward the middle span and negative

when the deck rotates downward toward the end span.



42

S AHAN AT AR G

Interior bearing

,
R
R

X //ﬂ///ﬂ//////

RS

W

Figure 3-13: Loading pattern to produce maximum

vertical downforce in interior bearing



43

\\\\‘H///////

NN W

=

Figure 3-14: Loading pattern to produce maximum
vertical uplift in interior bearing



44

7

Exterior bearing

Figure 3-15: Loading pattern to produce maximum
vertical downforce in exterior bearing



45

N

S S A// R
N —rOrOOSSS ////,,// S\y
,/////// T ,//////V/// /////

R

R R R S

Figure 3-16: Loading pattern to produce maximum
vertical uplift in exterior bearing



46

Y

e

Figure 3-17: Loading pattern to produce maximum

rotation such that deck rotates downward

toward center span



47

,//V//N/// /////////M/

///7 3 R //UV/////

N TR \ /y/ D
%WM/MVW/M....I.IIII"MMM/MW/M/MMMW%@
SR Sy My s sy TS S

,%/%///// NN ////1 //A, N RN N

Figure 3-18: Loading pattern to produce maximum
rotation such that deck rotates downward

toward end span



Table 3-2: Range of bearing rotations

Minimum rotation Maximum rotation
Interior bearing —0.000366 radians 0.000935 radians
Exterior bearing —0.000375 radians 0.000939 radians
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CHAPTER 4
EVALUATION OF THE
V-LOAD METHOD

Introduction

In design practice curved steel bridges are often analyzed using a
simplified analysis technique known as the V-load method, rather than finite
element methods. The bridge systems under consideration in this study,
however, violate one of the basic assumptions of the V-load method. The V-
load method, as described in Appendix C, assumes that all girders are directly
supported by bearings at the pier locations. For the bridges under consideration
here, interior supports consist of steel bent caps connected to narrow piers,
where the piers may be placed either at the deck’s center or eccentrically. The
girders not directly above the piers rest on flexible supports, namely the bent
caps. Although attempts are made in the design of these bridges to approximate
the support conditions assumed in the V-load method by providing very stiff
bent caps, these caps will necessarily allow some flexibility. This chapter will
examine the extent to which this flexibility causes the behavior of the bridge to
deviate from the behavior predicted by the V-load method, and will compare

V-load analysis results with more exact finite element results.
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Assumptions and the potential consequences of their violation

The curved bridges considered in this study obey most of the assumptions
of the V-load method. The bridges are open-framed with K-braces at the ends
of the bridges and X-braces frequently spaced along the lengths of the bridges.
The girders are plate girders with the top flanges connected by shear studs to
the slab in the positive moment regions of the girder. All girders at a cross-
section have roughly equivalent flexural stiffness and are equally spaced across
the cross-section.

The bridges considered herein, however, do not satisfy the implicit
assumption that all girders are vertically supported directly on piers at the
support locations. Instead, a single narrow pier supports the center of the
bridge cross-section leaving the ends of the cross-section free to sag. If the
cross-section sags at the ends, the cross-frames will resist the sag by applying
upward vertical shear forces on the end girders and equilibrating downward
vertical shear forces on the middle girders. These vertical shear forces will
overlay the V-loads, effectively producing a different distribution of vertical
shear loads from that assumed by the V-load method. The vertical shear forces
would be distributed as if, rather than assuming uniform, rigid-body rotations of
the cross-frames, the cross-frames were considered to undergo differential
rotations. These differential rotations violate the assumptions used to calculate
the C coefficients and violate the assumption of a linear distribution of the V-
loads across the cross-section.

The bridges are designed with some thought given to this violation of the
V-load method assumption, by providing stiff bent caps at the single-pier
supports. However, it is unclear how much stiffness is required of the bent caps

in order to satisfy the assumptions of the V-load method.
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Method of evaluation

Evaluation of the V-load results requires the use of a more sophisticated
analysis technique — one which can incorporate the effects of the support
conditions. By using the finite element method, all aspects of the bridge,
namely the slab, girders, diaphragms, bent caps and piers, can be incorporated
into the analysis, thus providing a more accurate determination of the
distribution of loads to the girders and to the bent caps. Thus, V-load method
analysis results will be compared to finite element method analysis results for

a variety of bridge design parameters.

Evaluation of girder moments

As mentioned before, if each girder is not individually supported directly
on the pier, the shear forces on the girders as calculated by the V-load method
may have incorrect magnitudes and these V-loads may not be distributed
linearly among the girders. If the V-loads applied to the girders are incorrect,
then the moments in the girders as calculated by the V-load method will be
incorrect. Thus, it is necessary to verify that the moments in the girders as
calculated by the V-load method - which considers each girder to be
individually supported — do not differ greatly from the moments as calculated
by the finite element method — which considers the actual support conditions.

While the V-load method returns the moments in the girders directly, the
finite element method returns only the stresses at the nodes of each element.
In order to compare the results from the two methods, the moments from the
finite element analysis could be calculated from the stresses, or alternatively, the
stresses from the V-load analysis could be calculated from the moments.
Because it was simpler to calculate the latter, the results are presented in terms

of the stresses — in particular, the axial stresses at the centroids of the bottom
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flanges.

Both a V-load analysis and a finite element analysis were performed on
the same seven girder 548 foot long plate girder bridge designed by TxDOT that
was used for analysis in the section "Typical results of analysis" in Chapter 3.
A plan view of the bridge indicating the support locations and girder numbers
appears in Figure 4-1. Figures 4-2 through 4-8 show the bottom flange axial
stresses in each of the seven girders when the bridge is subjected to dead load.
The V-load results tend to be conservative.,

Although this analysis is for dead load only, the critical live load case
produces similar results. For girder moments the critical live load case consists
of live load on all girders, since this maximizes the moments in each girder
when each is treated as a straight girder and also maximizes the V-loads which
are based on the sum of all of the girder moments at the cross-frame locations.
Thus, the dead load and live load case both consist of a uniformly distributed
load across the width of the deck, and thus the comparisons between the V-load
and finite element analyses for each load case will be similar. When, live loads
are not distributed across the full width of the deck, the differences between the
V-load and finite element results increase. However, such load cases will not

be critical for the design of the girders.

Evaluation of bent cap bearing reactions

Although the moments in the girders as determined by the V-load
method match adequately with the moments as determined by the finite element
method, the downward forces each girder applies to the bent caps do not
necessarily correlate with the girder reactions as determined by the V-load
method. The stiffness of the support which the bent cap provides to each girder
differs. The middle girders enjoy stiffer vertical support since the bent cap itself



53

Girder 1

Girder 2

Girder 3

Girder 4

Girder 5

Girder 6

Girder 7 =

Bent #15 Bent #14

Figure 4-1: Plan view of 548 foot long bridge



stress (ksi)

15

13

Figure 4-2: Dead load bottom flange stresses in girder 7

V-load Method

Finite Element
Method

Length along bridge

54



stress (ksi)

55

Figure 4-3: Dead load bottom flange stresses in girder 6
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Figure 4-4: Dead load bottom flange stresses in girder 5
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Figure 4-6: Dead load bottom flange stresses in girder 3
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Figure 4-7: Dead load bottom flange stresses in girder 2
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Figure 4-8: Dead load bottom flange stresses in girder 1
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is directly supported by the pier in the middle of the deck cross-section. More

flexible support is provided to the end girders, however, since the ends of the
bent cap can deflect. The tendency for differential vertical movement of the
girders at the bent cap is resisted by the cross-frames in the vicinity of the bent
cap, as shown later in Figure 5-9. When the end girders try to deflect vertically
with the bent cap ends, the cross-frames between the girders transfer some of
the vertical load from the end girders to the middle girders. If this transfer of
vertical forces is confined mostly to the cross-frames adjacent to the bent caps,
the moments in the girders will not be significantly affected by the transfer.
Thus, although the V-load method adequately predicts the moments in the
girders, the V-load method may not adequately predict the distribution of
reaction forces between each of the girders and the bent cap.

The redistribution of forces acting on the bent cap will not affect the
total vertical force transferred through the bearings from the bent caps to the
piers. The redistribution, however, will affect the transverse moments
transferred to the piers, and therefore will affect the vertical forces developed
at the bearings. The relationship between the total vertical force at the pier, the
transverse moment at the pier, and the forces developed in the bearings is
shown in Figure 4-9.

A sample five girder, three span bridge was modeled using both the V-
load method and the finite element method. Initially the three spans were set
at 150 feet, 180 feet, and 150 feet and the radius of curvature was set at 2000
feet. The interior bents were set on bearings spaced at 72 inches, where the
centerline of the pier corresponded to the centerline of the deck. Table 4-1
shows a comparison of the total vertical force and the total moment about a
longitudinal axis transferred to one of the interior piers when the bridge is

subjected to dead load. A positive moment indicates that the upward force of
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the couple acts on the interior bearing and the downward force of the couple
acts on the exterior bearing. Table 4-1 also shows vertical forces developed at
the bearings. A positive force acts downward, producing compression in the
bearing.

Table 4-1: Comparison of V-load and finite element results for sample bridge
under dead load

V-load method Finite element
method
Vertical force 1028 kips 1028 kips
Moment —30.9 kip-feet 138.6 kip-feet
Force at interior bearing 519 kips 491 kips
Force at exterior bearing 509 kips 537 kips

The total vertical force transferred to the pier is the same for both methods, but
the moments differ greatly in both direction and magnitude. Note, however,
that in this case the large error in transverse moment has little impact on the
predicted bearing forces, since the transverse moment under dead load is
relatively small. Similar results can be shown for uniform live load.

When live load is applied to only the innermost or outermost traffic
lanes, the transverse moment will be greater. Table 4-2 shows the bearing force
data for the same bridge with a single lane load in the innermost lane. The V-
load method overpredicts the transverse moments by almost 15 percent in this
case. As a result the V-load method produces a conservative estimate of the
compression in the interior bearing and a conservative estimate of the uplift, or
in this case minimum compression, in the exterior bearing. On the other hand,
when the outermost lane is loaded, the V-load method produces an
unconservative estimate of the compression in the exterior bearing and an

unconservative estimate of the minimum compression in the interior bearing, as
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shown in Table 4-3.

Table 4-2: Comparison of V-load and finite element results for sample bridge
under dead load and with live load in the innermost traffic lane

V-load method Finite element
method
Vertical force 1137 kips 1136 kips
Moment —1467 kip-feet -1284 kip-feet
Force at interior bearing 813 kips 782 kips
Force at exterior bearing 324 kips 354 kips

Table 4-3: Comparison of V-load and finite element results for sample bridge
under dead load and with live load in the outermost traffic lane

V-load method Finite element
method
Vertical force 1138 kips 1138 kips
Moment 1404 kip-feet 1602 kip-feet
Force at interior bearing 335 kips 302 kips
Force at exterior bearing 803 kips 836 kips

These two live load cases produce the critical uplift, or minimum
compression, forces in the exterior and interior bearings, respectively. For
this bridge, however, uplift is never actually reached — the bearings are
always subjected to at least 300 kips of compression. Nevertheless, the
bearings would be designed assuming that some uplift were possible.
Consequently, the unconservative errors in the V-load method do not affect
the design of the bearing to resist uplift forces when the V-load method
predicts that there will always be substantial compressive forces in the
bearings. When the bearing spacing is reduced to 24 inches, both the V-load
method and the finite element method predict uplift in the bearings, as
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shown in Tables 4-4 and 4-5. The V-load method conservatively predicts the

maximum uplift forces in both the interior and the exterior bearings.

Thus, if uplift is not present, the unconservative estimates of the
minimum bearing compression by the V-load method do not affect the design,
while if uplift is present, the V-load method is conservative in estimating the
uplift forces. Consequently, the V-load method appears adequate for
determining uplift forces.

Table 4-4: Comparison of V-load and finite element results for sample bridge
with a 24 inch bearing spacing under dead load and with live load in the
innermost traffic lane

V-load method Finite element
method
Vertical force 1137 kips 1134 kips
Moment —1467 kip-feet -1250 kip-feet
Force at interior bearing 1302 kips 1192 kips
Force at exterior bearing -165 kips -58 kips

Table 4-5: Comparison of V-load and finite element results for sample bridge
with a 24 inch bearing spacing under dead load and with live load in the
outermost traffic lane

V-load method Finite element
method
Vertical force 1138 kips 1141 kips
Moment 1404 kip-feet 1365 kip-feet
Force at interior bearing -133 kips -112 kips
Force at exterior bearing 1271 kips 1253 kips

To maximize compression in the interior or exterior bearing, live load

should be placed in the two innermost or two outermost lanes, respectively.



66

Although the results are not tabulated, the V-load method conservatively
estimates the maximum interior bearing reaction and unconservatively estimates
the maximum exterior bearing reaction. For the maximum compressive
reaction, the errors are about three to four percent, which is likely to be an
acceptable error. In general, the V-load method is conservative in estimating
bearing reactions when live load is in the innermost lanes and is unconservative
in estimating bearing reactions when live load is in the outermost lanes when
there is no uplift, and is conservative when there is uplift.

For the first sample bridge, the bearings were closely spaced at only six
feet. Consequently, the support stiffness provided to the end girders is
significantly less than the support stiffness provided to the middle girder, leading
to a substantial redistribution of vertical reactions at the bent cap. A wider
bearing spacing could potentially reduce the effects of the redistribution of
girder forces on the bent caps as the support stiffness provided by the bent cap
to each girder becomes more uniform. On the other hand, if the bearing
spacing were increased to the full width of the bridge such that the end girders
were directly above the bearings, the middle girders would have more flexible
supports. The middle girders would then redistribute load to the end girders
leading to the same problems that arise from narrow supports. Figure 4-10
bears out these arguments. The figure shows how the bearing reactions vary
with bearing spacing for the sample bridge described above. The analysis is for
dead load only. The finite element method predicts greater variation in the
bearing reactions than the V-load method. For the narrowest bearing spacing
of 72 inches, the exterior bearing reaction from the V-load method is about five
percent unconservative compared to the finite element method. At a bearing
spacing of about 22 feet, the bearing reactions are identical for the two

methods. That the bearing reactions are identical does not indicate that no
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redistribution of girder forces is occurring but rather that the redistribution is
such that the resulting total moment of the downward forces from the girders
after redistribution equals the total moment before redistribution. At the widest
bearing spacing of 30 feet, the interior bearing reaction predicted by the V-load
method is only two percent unconservative. Thus, the V-load method does not
accurately account for the redistribution of forces applied to the bent cap when
a narrow pier supports the bent cap, but the effect is not very significant.

Besides the bearing spacing, other parameters which may affect the
redistribution of girder forces include the radius of curvature and the ratios of
span lengths. These parameters do not affect the support stiffness provided to
each girder. Instead, these parameters affect the ratios of the girder bending
stiffness, which in turn affects the extent to which the girders will shed vertical
forces to or accept vertical forces from other girders. Considering variation of
the radius of curvature, for small radii of curvature the girders on the inside of
the curve are significantly shorter than the girders on the outside. The inside
girders are therefore stiffer than the outside girders. As the radius of curvature
increases, the differences in lengths, and therefore the differences in stiffness,
of the girders decrease. Likewise, considering variation of the ratios of the span
lengths, the girders on short spans will be stiffer than the girders on long spans.

Figure 4-11 shows that varying the radius of curvature does not lead to
any additional redistribution of forces. The shape of the pier moment curves
for the finite element analyses are essentially the same as that for the V-load
analysis. The only discrepancy between the finite element analyses and the V-
load analysis appears to be related to the bearing spacing.

For a three span bridge, at least two parameters must be varied to
determine the effects of variation of the span length ratios. For the analyses of

the sample bridges under varying span ratios, the total length of the bridge was
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kept constant at 480 feet — the same length as for the sample bridges used for
determining the effects of varying the bearing spacing and the radius of
curvature. Also like the previous sample bridges, the width of the bridge will
remain constant at five girders spaced at eight feet with bearings spaced at 72
inches. The first parameter to be varied is the length of the end span opposite
the pier at which moments are being calculated. The second parameter to be
varied is the length of the end span adjacent to the bearing at which moments
are being calculated. Since the total length of the bridge is kept constant, the
length of the center span equals 480 feet minus the lengths of the two end
spans. The lengths of the two end spans are each varied from 90 feet to 210
feet in increments of 30 feet. Figure 4-12 shows a plan view of the sample
bridge and indicates how the two variables for the end span lengths are varied.

Figures 4-13 through 4-17 show the results of the analysis for dead load.
In all cases, when the end span adjacent to the bearing is short, the V-load
results differ significantly from the finite element results. In a like manner,
when the end span opposite the bearing is short, the results differ more greatly
over a wider range of lengths of the adjacent span. Although the largest errors
occur for bridges with very unlikely span lengths, errors are also present for
bridges with more reasonable span lengths. For example, the V-load method
predicts a reaction in the exterior bearing which is about 15 percent
unconservative for a bridge with span lengths of 150 feet, 210 feet, and 120 feet.
Overall, results seem to correlate best when both end spans are fairly long.
Again, however, good correlation does not indicate that the V-load method is
redistributing forces in a manner similar to the finite element method. Instead,
the forces from the V-load analysis happen to produce the same bearing
reactions as the finite element method.

Thus, the V-load method can produce somewhat inaccurate, and



480'-LAa-LB

Figure 4-12: Relationship of variable span lengths

71



vertical reaction (kips)

900

300

700

200

100

72

Figure 4-13: Bearing reactions under varying span ratios

(LB = length of far end span = 90 feet)

—L}+— V-load method,
interior bearing

——— V-load method,
exterior bearing

"""" T Pinite element
method, interior
bearing

""""" £ Finite element
method, exterior

bearing

| H | | | |

80

100

1 1 I I ] 1
120 140 160 180 200 220
LA = length of adjacent end span (feet)



vertical reaction (kips)

800

700

600

500

400

300

200

100

Figure 4-14: Bearing reactions under varying span ratios

(LB = length of far end span = 120 feet)

—{3— V-load method,
interior bearing

—&—— V-load method,
exterior bearing

........ O Finite element
method, interior
bearing

""""" 4= Finite element
method, exterior
bearing

{ { | | |

80

100

1 | I I i
120 140 160 180 200
LA = length of adjacent end span (feet)

220

73



700

vertical reaction (kips)
w N th
8 3 38

)
3

100

74

Figure 4-15: Bearing reactions under varying span ratios

(LB = length of far end span = 150 feet)

13— V-load method,
interior bearing

——2&—— V-load method,
exterior bearing

"""" L1 Finite element
method, interior
bearing

""""" 2 Finite element

method, exterior
bearing

80

100

1 I | i i |
120 140 160 180 200 220
LA = length of adjacent end span (feet)



vertical reaction (kips)

500

400

300

200

100

Figure 4-16: Bearing reactions under varying span ratio
(LB = length of far end span = 180 feet)

—{+—— V-load method,
interior bearing
- —4— V-load method,
exterior bearing
"""" O Finite element
£ method, interior
bearing
""""" 4~ Finite element
1 method, exterior
bearing
| { | 1 | | |
| 1 ¥ ¥ | I |
80 100 120 140 160 180 200

LA = length of adjacent end span (feet)

220

75



vertical reaction (kips)

500

450

400

350

300

250

200

150

100

50

Figure 4-17: Bearing reactions under varying span ratios

(LB = length of far end span = 210 feet)

1 —T— V-load method,
interior bearing
-+ —4&—— V-load method,
exterior bearing
T e L Finite element
method, interior
4 bearing
""""" £ Finite element
T method, exterior
bearing
| i ] | |
1 1 1 ] ¥ 1 1
80 100 120 140 160 180 200 220

LA = length of adjacent end span (feet)

76



77

unconservative, bearing reactions when the end spans are particularly short
relative to the length of the entire bridge. It is unlikely, however, that such
short span lengths would be used in an actual bridge.

Effects of off-center piers

As discussed above, the V-load method sometimes produces inaccurate
estimates of transverse moments at the pier for bridges where the centerline of
the pier coincides with the centerline of the deck. When the deck is
cantilevered from the pier, however, the results improve. In a centered system,
the redistribution of vertical girder forces leads to significant changes in
transverse moment since the initial forces before redistribution are fairly well
balanced and do not lead to significant moments themselves. On the other
hand, in a cantilevered system, as shown in Figure 4-18, there is already a large
transverse moment on the bent cap before any redistribution of girder forces
occurs. Consequently, changes in transverse moment due to bent cap flexibility
are considerably less significant. To validate this argument, an analysis was
made of the same five girder bridge used for evaluating the bent cap bearing
reactions of the centered system. The bridge has a radius of curvature of 2000
feet, span lengths of 150 feet, 180 feet, and 150 feet, and a bearing spacing of
72 inches. Figure 4-19 shows the transverse moments at a pier as the pier is
moved from the center of the deck to 12 feet outside the center of the deck.
This figure indicates an insignificant difference between V-load and finite
element results. Figures 4-20 through 4-23 further show that as the cantilever
arm increases, the differences between the V-load method and the finite
element method under the variation of span lengths tend to become
insignificant. Thus, for a cantilevered deck, the V-load method produces

consistently conservative results relative to the finite element method.
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Figure 4-21: Pier moments under varying span length
(72 inch cantilever arm, LB = length of far end span = 150
feet)
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Design Recommendations

The V-load method produces reasonably accurate girder moments for
bridges supported on narrow piers. The vertical forces exerted by the girders
on the bent caps, however, are not distributed properly by the V-load method.
In some cases this results in somewhat unconservative estimates of the bearing
reactions.

Unconservative estimates of the bearing reactions can arise when the live
load is not placed in all of the lanes. When live load is placed in the interior
lanes, the V-load method conservatively predicts bearing reactions, but when the
live load is placed in the exterior lanes, the V-load method unconservatively
predicts the bearing reactions. The unconservative errors in the maximum
compressive force in the bearings will typically be only three or four percent,
while unconservative errors in the maximum uplift — or more typically, the
minimum compression — force can be more than ten percent. If the V-load
method predicts that there will always be substantial compression in the
bearings, the error in the minimum compression forces will not affect the design
since the bearings are usually designed to withstand some amount of uplift even
when none is expected. If the V-load method predicts uplift, however, the V-
load method’s error will be conservative.

The V-load method’s results are not significantly unconservative when the
end spans are fairly long relative to the length of the bridge. For such bridges,
bearing designs based on V-load analyses should be adequate albeit slightly
unconservative. For bridges with short end spans and long center spans,
estimates of the bearing reactions can be more than 15 percent unconservative.
For these cases designers should consider using a finite element analysis that
properly models the support conditions.

For off-center pier supports, the V-load method produces results which
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are fairly consistent with the finite element method results, so the V-load

method should be adequate for bearing designs of bridge with off-center piers.



CHAPTER 5
EVALUATION OF CROSS-
FRAME FORCES

AASHTO specifications for cross-frames

The American Association of State Highway and Transportation Officials
(AASHTO) specifies requirements for the design of the cross-frames for
horizontally curved bridges in two documents. The basic specifications for the
cross-frames of steel I-girder bridges, curved or straight, are given in the Standard
Specifications for Highway Bridges [1]. Additional requirements for the cross-
frames of curved bridges are provided in the Guide Specifications for Horizontally
Curved Highway Bridges [2].

Basic specifications for the design of the cross-frames appear in Articles
10.20 and 10.21 of the Standard Specifications. Article 10.20.1 states the following

general requirements:

e Plate girder spans shall be provided with cross frames at
each support and with intermediate cross frames placed in

all bays and spaced at intervals not to exceed 25 feet.

® Cross frames shall be made as deep as practicable.
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* Intermediate cross frames shall preferably be of the cross

type or vee type.

* Cross frames on horizontally curved steel girder bridges shall
be designed as main members with adequate provisions

for the transfer of lateral forces from the girder flanges.

® Cross frames shall be designed for horizontal wind forces as
described in Article 10.21.2.

Article 10.21.2 specifies that “a horizontal wind force of 50 pounds per square
foot shall be applied to the area of the superstructure exposed in elevation,”
where half of the force is applied in the plane of each flange. Article 10.20.2.2
specifies that the maximum horizontal force, F,, in pounds, in the transverse cross

frames due to this wind load is obtained from:

F, =114 WS, (5-1)
where W is the wind loading along the exterior flange in pounds per foot and S,
is the cross-frame spacing in feet. From Article 10.21.2, W equals the wind
pressure of 50 pounds per square foot times the depth of the superstructure
exposed in elevation in feet divided by two to distribute the force to the two
flanges. No explanation is given for the 1.14 factor.

Specifications for the design of the diaphragms and cross-frames of
horizontally curved bridges in particular are given in Articles 1.4 and 1.8 of the
Guide Specifications for Horizontally Curved Highway Bridges. Article 1.4 describes
the design theory for curved bridges:
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* The moments, shears, and other forces required to
proportion the individual members, shall be based on a
rational analysis of the entire structure which takes into
account the complete distribution of loads to the various

members.

¢ Intermediate transverse cross frames must be provided
between the longitudinal members for the purpose of
distributing the internal torsion at any cross section to the

individual members.

* Analysis shall be based on any rational method which takes
into account the normal stresses developed in the curved
longitudinal members due to nonuniform torsion (lateral
flange bending).

This section effectively precludes the use of the simple methods of distributing
loads found in the Standard Specifications. For those methods, it is assumed that
the torsion in the girders is a negligible secondary effect so that only the bending
of the girders is considered as a primary structural action. For a horizontally
curved girder, torsion is a significant effect and providing restraint against this
torsion is necessary for stability. Because this torsional restraint is provided
through interaction of the girders, the structure must be analyzed as a system.
AASHTO recommends some methods which analyze the bridge as a system
including the V-load method and several programs employing the finite element
method.

Article 1.8 of the Guide Specifications for Horizontally Curved Highway
Bridges states the particular requirements for diaphragms, cross frames, and
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lateral bracing. The article begins by adopting the general provisions of Article
10.20 of the Standard Specifications. Article 1.8 makes the following additions to
Article 10.20:

e Cross frames shall be provided at each support and at
intermediate intervals between supports with spacing as

determined by design considerations.

e Each line of cross frames shall extend in a single plane
across the width of the bridge with cross frames included
between all longitudinal girders.

¢ Cross frames shall be full depth members designed as main
structural elements to distribute torsional forces to the

longitudinal girders.

e The cross frames shall be framed in such a way to transfer
the horizontal and vertical forces to the flanges and webs

as necessary.

® Cross frame connection plates attached to the girder web
shall be connected to flange(s) as well in a manner that
will prevent distortion of the web at each end of the

connection plate.

Current TXDOT designs for cross-frames

A description of the standard intermediate cross-frame details appears
earlier in the description of the bridge systems. Figure 5-1 presents the bracing
details again. In accordance with the AASHTO requirements, each line of

intermediate cross type cross-frames extends in single plane across the width of
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the bridge with cross-frames included between all longitudinal girder. The lines

of cross-frames are provided at intervals of less than 25 feet. The cross-frame
members transfer the horizontal and vertical forces to the girders via web
connection plates. These web connection plates are welded to the webs of the
girders and milled to bear on the bottom flanges of the girders and fit tightly
against the top flanges so as to preclude web distortion. The cross-frames are
made as deep as possible given that the cross-frame members must be placed a
few inches inside of the girder flanges to allow for welding of the cross-frame

members to the web connection plates.

Anticipated forces in cross-frames

The cross-frames must redistribute lateral wind forces between the girders
and must redistribute forces to resist the internal torsion resulting from the
curvature of the girders. AASHTO specifies a simple equation for the maximum
horizontal force in a cross-frame due to wind load. The results from the
AASHTO equation will be compared to the results of a finite element analysis
of a bridge subjected to wind load. The Texas Department of Transportation
determines the forces necessary to resist the internal torsion of the curved bridge
by the V-load method. The cross-frame forces from the V-load method for a
bridge will be compared to the forces determined by a finite element analysis.

Horizontal cross-frame forces due to wind loading

Because this cross-frame detail is intended for use as a standard detail for
all bridges conforming to the layout specified previously in the description of
bridge systems in Chapter 2, the frame must be designed to transfer the worst-
case wind load expected in any of these bridges. From the equation for the

maximum horizontal force in a cross-frame due to wind load, the worst-case
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horizontal force results when the cross-frame spacing and the depth of the
superstructure exposed in elevation are at their maximum values. The maximum
cross-frame spacing is 25 feet. The maximum depth of the superstructure results
when the webs of the girders are deepest and when the width and superelevation
of the slab are at a maximum. For this analysis the maximum girder depth was
assumed to be 66 inches, the maximum slab width was taken as 60 feet, and the
maximum superelevation was assumed to be 6 percent. Including the thicknesses
of the slab and the girder flanges, the maximum depth of the superstructure is
about 10 feet. Although no barriers were shown in the bridge designs used for
this study, such barriers should be included in the calculation of the depth of the
superstructure. In the following calculations, the height of the barriers is ignored.
Including the barrier height in the calculations would increase all of the results
by the same ratio, so ignoring the barriers will not affect the comparison. Thus,
given a superstructure depth of 10 feet, the maximum wind load on each flange
is
W = 50 psf x 10 ft / 2 = 250 lbs/ft (5-2)

Thus, the maximum horizontal force in a cross-frame is

F,, = 1.14 x 250 lbs/ft x 25 ft = 7125 lbs = 7.1 kips (5-3)
This horizontal force is then distributed among the four members in each cross-
frame.

Another simple way to estimate the horizontal force in a cross-frame is to
assume that the cross-frames distribute the wind pressure on the exposed girder
evenly among all of the girders. It is further assumed that the concrete slab does
not help distribute the wind load to the girders. Each line of cross-frames, then,
would be responsible for distributing a total force F, equal to the wind pressure

times the depth of the superstructure exposed in elevation times a tributary length
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of span equal to the cross-frame spacing. For the worst-case bridge described

above,

F, = 50 psf x 10 ft x 25 ft = 12.5 kips (5-4)
Since there are seven girders, each girder would resist one-seventh of this force.
The maximum horizontal force in a cross-frame will appear in the cross-frame
adjacent to the girder exposed to the wind, since the girder exposed to the wind
is subjected to the total force F; but resists only one-seventh of this force, leaving
six-sevenths of the force to be transmitted by the cross-frame. From this

argument the maximum horizontal force in a diaphragm would be,

F, = 6/7 x 12.5 kips = 10.7 kips (5-5)
A finite element analysis of this worst-case bridge bears out this result.
When the slab is excluded from the model, the maximum horizontal force seen
in a cross-frame is 10.99 kips in a cross-frame adjacent to an exposed girder. The
distribution of forces in the line of cross-frames also compares well to the forces
expected from an equal distribution of forces to the girders as shown in Table 5-
1. In the table cross-frame 1 corresponds to the cross-frame adjacent to the

exposed girder.
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Table 5-1: Distribution of cross-frame forces due to wind load

Cross- Forces distributed evenly Finite element
frame among the girders analysis

1 10.7 kips 11.0 kips

2 8.9 kips 9.2 kips

3 7.1 kips 7.4 kips

4 5.4 kips 5.6 kips

5 3.6 kips 3.8 kips

6 1.8 kips 1.9 kips

When the slab is included in the model, the slab attracts some of the horizontal
forces away from the cross-frames. With the slab the maximum horizontal force
in the cross-frames comes close to the load given by AASHTO, specifically 7.7
kips predicted by the finite element analysis of the bridge with a slab compared
to 7.1 kips predicted by the AASHTO equation. From this comparison, it is seen
that the AASHTO specifications for cross-frame forces due to wind loads provide
reasonably close approximations to the forces predicted by more complicated
methods when the slab is considered to help resist the wind load.

Of course, the maximum wind force to which a bridge is subjected is not
known with much certainty. Consequently, the small differences in the results

from the different analysis methods are not significant.

Cross-frame forces due to resistance of internal torsion

Besides resisting the horizontal forces from the wind load, the cross-frames
must resist the internal torsion resulting from the curvature of the girders.
AASHTO specifies that the bridge must be analyzed as a system to determine the

forces in the cross-frames. To this end the Texas Department of Transportation
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analyzes the bridges using the V-load method.

As described in the discussion of the V-load method, when a curved I-
girder is subjected to a vertical load, the girder resists the load by developing
axial stresses primarily in the flanges, much like a straight I-girder. Unlike a
straight girder, however, the axial stresses are not collinear along the length of
the curved girder. Thus, at any cross-sectional slice of the girder there is a
tangential component of the axial stress and a normal component. The tangential
component of the stress is associated with the conventional bending of the girder
while the normal component is associated with lateral flange bending. The
primary purpose of the cross-frames in a curved bridge is to resist this lateral
flange bending. The cross-frames accomplish this by redistributing the forces
which would lead to lateral flange bending as vertical forces on the girders in
such a way that the internal torsion of the cross-section is balanced.

In the development of the V-load method equations as given in Appendix
C, it is first assumed that the vertical load produces moments in the girder as if
the girder were straight. The moments from the analysis of the straight girder are
used to find the magnitudes of the normal forces which, unrestrained, would lead
to lateral flange bending. Given a moment in the girder at the cross-frame of M,
a cross-frame spacing of d, a girder depth of 4, and a radius of curvature for the

girder of R, the lateral flange force is calculated as,

H=Md/hR (5-6)
where this lateral flange force H is directed away from the center of curvature in
the compression flange and toward the center of curvature in the tension flange.
The torsion resulting from the application of these forces must be balanced by

the torsion resulting from the vertical reactions at the girders such that,

hEH =XIVx (5-7)
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where H, is the lateral force in a flange of girder i, V; is the vertical reaction from
girder j, and x; is the distance of girder j from the centroid of the bridge cross-
section. The V-load method assumes that the bridge rotates as a rigid body such
that the vertical reactions are proportional to the distance from the centroid of
the cross-section.

From this discussion it can be seen that the horizontal and vertical forces

in the cross-frames will be maximized when:
e The moments in the girders are maximized.
® The spacing of the cross-frames is maximized.
e The depths of the girders are minimized.
e The radius of curvature of the bridge is minimized.

e The distances from the centroid of the bridge cross-section

to the girders are minimized

To maximize the girder moments, the span lengths and loads should be
maximized. Thus full dead and live load should be used on a span of about 200
feet. The maximum allowable cross-frame spacing according to AASHTO is 25
feet. The minimum girder depth used for these bridges is about 48 inches, the
minimum radius of curvature is about 900 feet. The minimum distances from the
centroid to the girders occurs when the girder-to-girder spacing and the number
of girders are minimized, so the girder-to-girder spacing should be about 7.5 feet
and four girders should be used.

A bridge based on these dimensions was analyzed using the V-load
method. The line of cross-frames at the cross-section where the moments in the

girders were greatest naturally had the highest lateral flange forces. The lateral
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flange forces for this line of cross-frames is shown in Figure 5-2. Balancing these
lateral forces are vertical forces from the girders as shown in Figure 5-3. These
external forces on the cross-frame lead to internal forces in the cross-frame
members as shown in Figure 5-4, where half of the vertical reaction from each
girder is assumed to act on the top connection between the girder and cross-
frame and the other half is assumed to act on the bottom connection.

These results were compared to the results from a finite element analysis,
as shown in Figure 5-5. For the initial finite element analysis all of the girders
were directly supported on individual pin supports at the bent cap locations and
the slab was considered to have no stiffness. This was done to make the results
of the two types of analysis directly comparable, since the V-load method makes
these same assumptions about the girder supports and slab stiffness. Later finite
element analyses will be conducted with the slab stiffness included and the girders
will be supported by the bent caps.

A comparison of the V-load results and the finite element results shows
that the forces in the diagonal members are higher in the V-load analysis than in
the finite element analysis. This indicates that the vertical reactions from the
girders as computed by the V-load method are conservative. This can be
attributed partly to the V-load assumption that the moment along the tributary
length of the girder has a constant value equal to the moment at the cross-section
containing the line of cross-frames. In this case, the moment at the cross-section
containing the line of cross-frames was at a maximum and decreased on either
side of this cross-section, so that the true lateral flange force would be less.

A comparison of the results also shows that whereas the forces in the
horizontal members from the V-load analysis are almost symmetric about the
vertical centerline of the cross-section, the forces from the finite element analysis

are weighted toward the outside of the cross-section. The near symmetry in the
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V-load case results from having nearly identical moments in all four girders
leading to nearly identical lateral flange forces in all girders. The finite element
analysis indicates that the lateral flange forces are much greater in the exterior
girder than in the interior girder. This can be partly attributed to the fact that
the V-load method makes only a first-order calculation of the lateral flange
forces.

The V-load method calculates the lateral flange forces only once based on
the moments in straight girders under just the dead and live loads. When the
girders are analyzed again to produce final moment diagrams for the curved
girders by adding the initial dead and live loads to the vertical shear forces
needed to balance the internal torsion, the distribution of moments among the
girders changes such that moments in the interior girders decrease while moments
in the exterior girders increase. For this particular bridge for example, the
moment in girder 1 decreases by about 25 percent and the moment in girder 4
increases by about 30 percent. If the lateral flange forces were recalculated
based on these new moment diagrams, the lateral flange forces will be much
higher in girder 4 than in girder 1, thus correlating better with the finite element
analysis.

It should be noted that these second-order effects impact only the
distribution of lateral flange forces and not the distribution or magnitude of the
vertical shear forces. The magnitudes of the vertical shear forces are based on
the sum of the moments across the cross-section, so the decreases in moments in
the interior girders cancel the increases in moments in the exterior girders. The
distribution of the vertical shear forces is fixed such that the vertical shear force
in a girder is proportional to the distance of the girder from the centroid of the
deck’s cross-section. Thus, using the V-load method for determining the girder

moments gives adequate results without considering second-order effects, while
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using the method for determining the cross-frame forces requires consideration
of the second-order effects.

As mentioned before, these results have ignored the stiffness of the
concrete slab. When the slab is added to the model, some of the lateral flange
forces will be distributed to the slab rather than the cross-frame members. Figure
5-6 shows the distribution of cross-frame member forces when the slab is
included. The forces have changed substantially from when the stiffness of the
slab was excluded from the analysis. The first reason for the difference is that
the distribution of stresses in the girders has changed since the girders now act
compositely with the slab, thus altering the distribution of lateral flange and slab
forces. The second reason for the difference is that the lateral flange and slab
forces are now partly distributed by the slab thereby reducing the horizontal
forces in the cross-frames. The third reason for the difference is that the slab has
torsional stiffness which allows the slab to resist some of the internal torsion,
thereby reducing the vertical shear forces on the girders. The overall effect of
including the slab, then, is to alter the distribution and decrease the overall
magnitudes of the cross-frame forces, so the V-load method still produces

conservative estimates of the cross-frame forces in resisting the internal torsion.

Additional cross-frame forces due to flexibility of the bent caps

Heretofore the finite element models have included individual vertically
rigid pin supports under each girder at the bent cap locations. The real bridges,
however, do not have vertically rigid pin supports at each girder, but rather, the
girders are supported by the bent caps. Although the bent caps are very stiff, the
girders at the ends of the bent cap inevitably sag slightly at the bent cap cross-
sections. This sag puts additional forces on adjacent cross-frames as the cross-

frames attempt to straighten the cross-section. The forces will be such that the



102

Girder 4 Girder 3 Girder 2 Girder 1
(exterior) (interior)
+3.39k +2.58k +2.71k
f i i ]
NN NN N~
830k Xy - +7.61 K - 634k X Z 3.67k
-9.18 SR AN SXf6.22k
I. ] ]| .
245k +0.84 k +2.15k

Figure 5-6: Forces in cross-frame members according to

the finite element analysis considering the stiffness of
the slab



103

slab, which will now be considered in the finite element model, will be in tension
in the transverse direction while the bottom chords will be in compression. When
the individual pin supports are replaced with bent caps with 72 inch wide bearing
supports, the forces in the cross-frames adjacent to the bent caps are as shown
in Figure 5-7. These forces include not only the effects of bending of the cross-
frames due to the bent cap flexibility but also include the effects of torsion in the
bridge. The maximum forces — relative to the capacities of the members which
are presented later — have not changed significantly from the earlier analyses
indicating that, for this particular bridge, the cross-frame bending effects do not
overwhelm the torsional effects. On the other hand, the bent caps in this model
are not the most flexible bent caps used in these bridges.

Because the worst-case forces in the cross-frames occur when the bent caps
have the greatest flexibility, the model was changed to a wider, seven girder
bridge with a very flexible bent cap. The resulting worst-case cross-frame
member forces are shown in Figure 5-8. The maximum compressive forces in the
bottom chords are about 52 kips, much higher than the maximum compressive
force due to torsional effects of 7.6 kips as predicted by the V-load method alone.
Admittedly, the bent caps used in this model are probably much more flexible
than ones likely to be seen in real bridges. The particular bent caps in this model
allow the ends to sag about (.75 inches, whereas more typical bent caps allow
sags of only about 0.3 inches. Even when the bent caps are made stiffer so that
the ends sag only 0.3 inches, however, the maximum compressive forces in the
bottom chords are still around 27 kips. Thus, the forces which result from the
flexibility of the bent caps will be significant in the design of the cross-frame
members. It should be noted that only the cross-frames immediately adjacent to
the bent cap are significantly affected by bent cap flexibility.
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Conclusions on forces

The AASHTO approximation of the maximum horizontal force in the
cross-frames due to wind load and the V-load method approximations of the
cross-frame member forces due to internal torsion appear adequate for bridges
where all girders are individually supported at the interior support locations.
When the girders are supported by bent caps at the interior support locations, the
flexibility of the bent cap will lead to cross-frame forces significantly larger than
those predicted by the V-load method.

Allowable forces in TxXDOT cross-frame members

In this section allowable loads on the members of the standard cross-
frame, as shown in Figure 5-1, will be estimated. Because the AASHTO
specifications are not as thorough in the treatment of axially loaded angles as the
American Institute of Steel Construction (AISC) Allowable Stress Design
specifications [3], allowable forces in the cross-frame members will be determined
by the AISC specification.

For a tension member, the allowable force is 91 kips, controlled by
fracture of the effective net area at the connection. For a horizontal compression
member with an unbraced length of up to 96 inches and an assumed k-factor of
1.0, the allowable force is 28 kips, based on flexural-torsional buckling. For a
diagonal compression member with an unbraced length of up to 113 inches and
an assumed k-factor of 1.0, the allowable force is 20 kips, based on flexural-

torsional buckling. These allowable forces are based on A588 steel.

Design recommendations for cross-frames
The cross-frames must be designed to distribute wind forces to the girders

and to redistribute forces resulting from torsion in the curved bridge. The
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maximum horizontal cross-frame forces due to wind load are predicted reasonably
well by the AASHTO equation for these forces, except when the slab has not
developed adequate stiffness to help the cross-frames distribute the wind forces
to the girders. The forces in the cross-frame members which are required to
distribute forces arising from the internal torsion of the bridge are predicted
conservatively by the V-load method. The current TxDOT cross-frame designs
are conservative for the distribution of the wind load and of the forces arising
from the torsion in the bridge. In the cross-frames adjacent to the bent caps,
however, the flexibility of the bent caps result in cross-frame forces well in excess
of the forces predicted by the AASHTO equation and the V-load analysis. For
these cross-frames additional design criteria should be considered in the design

of the cross-frames.

Member forces from wind load and internal torsion

The AASHTO equation for wind load estimates the maximum horizontal
force in a cross-frame for a worst-case bridge as 7 kips, although during
construction when the slab has not developed enough stiffness to help distribute
the wind forces, a finite element analysis estimates a maximum horizontal force
of 11 kips. During construction, however, no live load is applied to the bridge,
so the forces arising from the resistance of the internal torsion will not be at the
maximum levels. Furthermore, when the bridge is in operation, full live load and
wind load need not be considered simultaneously. Only 30 percent of the wind
load need be applied with full live load.

The V-load method conservatively predicts maximum tensile and
compressive forces in the cross-frame diagonals of 16 kips. The V-load method
also adequately predicts maximum tensile and compressive forces in the cross-

frame horizontals of 8 kips. Finite element analyses show the horizontal forces
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to reach as high as 8 kips in both tension and compression.

For the current TxDOT designs the member forces from wind and the
resistance of internal torsion fall within the allowable forces, which allow 91 kips
in the tension members, 29 kips for the horizontals in compression, and 20 kips

for the diagonals in compression.

Member forces from flexibility of the bent caps

In addition to distributing wind forces and the forces arising from internal
torsion of the bridge, the cross-frames adjacent to the bent caps must resist the
sagging of the girders at the ends of the cross-section of the bridge which results
when the flexible bent caps are supported only at the center of the bridge’s cross-
section. A simple technique for estimating the cross-frame forces can be
developed which bases the forces in the cross-frames on the displacements at the
ends of the bent cap. Because the bent caps experience a great deal of shear
deflection and because the bent caps have nonuniform cross-sections, estimates
of the end deflections may prove difficult. Nevertheless, presenting the simple
technique may help illustrate the necessary conditions which guarantee an
adequate design for the cross-frames.

Estimation of the cross-frame forces resulting from the sagging of the ends
of the bent caps can be achieved by treating the line of cross-frames as a frame
or truss, the ends of which displace downward relative to the center by the same
amount as the ends of the bent cap, as shown in Figure 5-9. The slabs and other
cross-frames, however, will help to straighten the cross-section of the bridge, so
the assumption that the ends of the line of cross-frames adjacent to the bent caps
must deflect the same amount as the ends of the bent caps is conservative.
Nonetheless, if both ends of the bent cap, and therefore both ends of the line of

cross-frames adjacent to that bent cap, displace the same amount A, then by
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symmetry, the line of cross-frames can be divided in half, so that each half of the

line of cross-frames acts like a cantilevered frame with an end displacement equal
to the end displacement of the bent cap. A plane frame or truss analysis program
can be used to determine the cross-frame forces under the applied end
displacement.

The only practical way to ensure that the maximum forces in the cross-
frames are below the allowable forces is to control the bent cap deflections. It
is either useless or impossible to modify the cross-sectional area of the cross-
frame members, the depth of the cross-frames, or the width of the bridge in order
to control cross-frame forces. Increasing the cross-sectional area of the cross-
frame members would increase their capacity, but because most of the forces in
the cross-frames near the bent caps result from an imposed displacement,
member forces would increase in a roughly proportionate manner. Increasing
member size will help reduce the imposed displacement slightly, but the gains
from increasing member size are modest. For example, doubling the member
size would still result in an increase in the member forces of 70 to 80 percent.
Likewise, reducing the cross-sectional area of the cross-frame members would
decrease the forces in the members but at the same time would decrease their
capacity by roughly the same degree. Reducing the depth of the cross-frames is
not allowed under AASHTO, which requires that the cross-frames be made as
deep as practicable. The width of the bridge cross-section, of course, is
predetermined by the number of traffic lanes and cannot be altered simply to
reduce forces in the cross-frames. Thus, the only cross-frame parameter which
can be altered to reduce the cross-frame forces is the bent cap deflections.

As mentioned before, however, calculating the bent cap deflections can be
difficult. If the deflections can be calculated, a plane frame or truss analysis

program should be used to determine the cross-frame forces. Otherwise, the
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designer should at least be aware that it is necessary to limit bent cap deflections
in order to guarantee that the forces in the cross-frames are below the allowable
limits. Furthermore, the designer should be aware that these deflection limits can
be quite small. For example, given that the maximum allowable compressive
force in a horizontal member given the current TxDOT cross-frame design is 29
kips, the deflection limit for a narrow bridge with a bent cap 24 feet across,
bearings spaced at 72 inches, and with cross-frames 59 inches deep
(corresponding to a web depth of 66 inches) is only 0.12 inches, while the
deflection limit for a wide bridge with a bent cap 48 feet across and with cross-

frames 59 inches deep is only 0.41 inches.

Conclusions on design recommendations

Current TxDOT cross-frame designs appear adequate for the distribution
of forces due to wind load and forces resulting from the internal torsion of the
bridge. To ensure that these designs are also adequate in resisting the sag of the
ends of the bridge cross-section near the bent caps, additional analyses of the
cross-frames may be required, or deflection limits may need to be placed on the

bent caps.



CHAPTER 6
SUMMARY AND
CONCLUSIONS

Introduction

This thesis has pursued four goals. The first goal was to determine
reaction forces and deflections at the bearings using the finite element method.
Achieving the first goal required the pursuit of the second goal of determining
loading patterns which produced maximum bearing forces and deflections. The
third goal was to verify the adequacy of the V-load method for determining both
the behavior of the longitudinal girders and the behavior of the bent cap and
bearings. The fourth goal was to investigate the forces developed in the cross-

frames.

Bearing reactions and deflections

The loading patterns that produce the maximum bearing reactions and
rotations are presented in Chapter 3. The loading patterns are summarized in
Figures 6-1 and 6-2. Although these patterns are shown for a bridge with the
centerline of the bearings coincident with the centerline of the deck, the patterns
also apply when the bearings are offset from the center of the deck. When the

bearings are offset, the edges of the loaded areas move with the bearings.
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Evaluation of the V-load method

Chapter 4 presents a comparison between the V-load method and the
finite element method in determining the girder moments and the bearing
reactions. The V-load method predicts reasonably accurate girder moments for
bridges supported on narrow piers. The vertical forces exerted by the girders on
the bent caps, however, are not distributed properly by the V-load method. In
some cases this results in somewhat unconservative estimates of the bearing
reactions.

Unconservative estimates of the bearing reactions can arise when the live
load is not placed in all of the lanes. When live load is placed in the interior
lanes, the V-load method conservatively predicts bearing reactions, but when the
live load is placed in the exterior lanes, the V-load method unconservatively
predicts the bearing reactions. The unconservative errors in the maximum
compressive force in the bearings will typically be only three or four percent,
while unconservative errors in the maximum uplift — or more typically, the
minimum compression — force can be more than ten percent. If the V-load
method predicts that there will always be substantial compression in the bearings,
the error in the minimum compression forces will not affect the design since the
bearings are designed to withstand some amount of uplift even when none is
expected. If the V-load method predicts uplift, however, the V-load method’s
error will be conservative.

The V-load method’s results are not significantly unconservative when the
end spans are fairly long relative to the length of the bridge. For example, typical
bridges with span ratios of 1.0 — 1.2 — 1.0 unconservatively estimate the vertical
reaction in the exterior bearing by about five percent. For such bridges, bearing
designs based on V-load analyses should be adequate albeit slightly

unconservative. For bridges with short end spans and long center spans,
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estimates of the bearing reactions can be more than 15 percent unconservative.
For these cases designers should consider using a finite element analysis that
properly models the support conditions. |

For off-center pier supports, the V-load method produces results which are
fairly consistent with the finite element method results, so the V-load method
should be adequate for bearing designs of bridge with off-center piers.

Cross-frame forces

Chapter 5 presents analyses of the cross-frame forces in distributing wind
load, distributing forces to resist the internal torsion of the deck, and distributing
forces to resist the sag at the ends of the bent caps. The maximum horizontal
cross-frame forces due to wind load are predicted reasonably well by the
AASHTO equation for these forces. The forces in the cross-frame members
which are required to distribute forces arising from the internal torsion of the
bridge are predicted conservatively by the V-load method. The current TxDOT
cross-frame designs are conservative for the distribution of the wind load and of
the forces arising from the torsion in the bridge. In the cross-frames adjacent to
the bent caps, however, the flexibility of the bent caps result in cross-frame forces
well in excess of the maximum forces predicted by the AASHTO equation and
the V-load analysis. For these cross-frames additional design criteria should be
considered in the design of the cross-frames, such as imposing deflection limits

on the ends of the bent caps.



APPENDIX A
DESCRIPTION OF THE FINITE
ELEMENT MODELS

Introduction

The bridges were modeled using the ANSYS [4] finite element analysis
program by Swanson Analysis Systems, Inc. ANSYS is a commercially available
general-purpose finite element program. ANSYS can consider nonlinearities in
both materials and geometry. In this study, however, only first-order elastic
analyses were performed.

For the multigirder, multispan steel bridges in this study, four types of
components were used: longitudinal plate girders, X- and K-brace cross-frames,
steel bent caps, and concrete slabs. The following paragraphs describe how
each component was modeled in ANSYS and, where appropriate, how support
conditions were applied. In Appendix B, a simple bridge system is modeled
using ANSYS. Analysis results are compared to closed form solutions to

provide some verification of the modeling techniques.

Longitudinal steel girders

The longitudinal plate girders were modeled using 4-node shell elements
for the webs and 2-node beam elements for the flanges, with each of these
elements extending from one cross-frame to the next, as shown in Figure A-1.

Using only one set of elements between cross-frames is a bare minimum
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Figure A-1: Elements used to model the steel subframe
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to provide the necessary connectivity between the bridge members. A finer
mesh could have been used, but analyses showed that accuracy improved very
little with mesh refinement while computer time and memory increased greatly
with mesh refinement. Analyses were performed on a model with one set of
elements between cross-frames and on a model with three sets of elements
between cross-frames. The deformations and stresses given by the models
differed by about only one percent, where the model with only one set of
elements between the cross-frames tended to be stiffer than the model with
three sets of elements between the cross-frames. Although models with finer
element meshes tend to be more accurate, by tripling the number of elements,
the accuracy improved by only about one percent while the computer run time
and memory requirements tripled. Thus, such model improvements are not very
practical and were not included in the models.

Another problem arising from using a coarse mesh is that element
properties, namely web and flange thicknesses, cannot change between cross-
frames. Where designs call for a change in plate thickness between cross-
frames, the model simply uses a single thickness — the thickness of whichever
plate occupies the greater length of the distance between the cross-frames.
Because the cross-frames are typically spaced about 15 feet apart, the splice
between the two different plates will always be within 7.5 feet of the correct
location. This discrepancy in splice location is small relative to the total length
of the bridge, so the discrepancy does not produce an appreciable error. For
example, when the location of a splice in one model was moved about 15 feet
and where the increase in plate thickness at the splice was 25 percent, the
reactions at the bearings near the splice changed only 0.5 percent while the
reactions in the bearings further from the splice changed even less. Thus, using

a single plate thickness between the cross-frames seems adequate for modeling
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the girders.

The element types used to model the girders were chosen to provide both
accuracy and simplicity. Because the girders act primarily as bending members,
the bending stresses will concentrate in the flange elements as axial stresses.
The web elements, then, must primarily model the transfer of shear. This can
be accomplished by modeling the webs with only a single shell element over the
web depth, where web depth is considered to be the distance between the
centroids of the top and bottom flanges. Such simple web elements are possible
since the web elements will be close to square — web element aspect ratios of
~ length to depth of less than three to one — and since shell elements model in
plane shear very accurately. Furthermore, shell elements model out of plane
bending very well and can include the effects of web distortion. Had shell
elements also been used for the flanges, the elements would have been long,
thin and badly-formed, producing inaccurate results, particularly for the lateral
bending of the flanges associated with torsion in plate girders. Furthermore,
using shell elements for the flanges would require additional nodes not already
provided by the webs, which would increase the size of the computer model and
increase the time required to run the model. Lastly, it is unclear how to
connect the flange tips to the slab since the slab will load the entire width of the
flange vertically but will load only the middle of the slab in shear. Instead,
beam elements, which produce results equivalent to engineering beam theory
for any length of element regardless of the nominal aspect ratio of the plate
being modeled, were chosen since they can fairly accurately model the axial
flange forces due to girder bending and lateral bending moments due to torsion
of the girder. These beam elements were located vertically at the middepths of
the flanges so that the axial forces in the flanges due to bending, which would

be centered very close to the centroids of the flanges, would coincide with the
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centroids of the beam elements. At the two ends of the bridge where the
longitudinal girders rest on supports, the bottom end nodes of the girders are
fixed against translation in the vertical and transverse directions. The nodes are
free to rotate and to translate in the longitudinal direction. Thus, the supports
act as rollers which roll in the longitudinal direction.

Steel cross-bracing

The X-braces are modeled using truss elements for the brace members
and beam elements for the web stiffeners. Truss elements consider only axial
stiffness, and disregard bending and torsional stiffness. The elements are
connected to the top and bottom flanges of the girders, as shown in Figure A-1.
The K-braces are modeled using beam elements for the top cross members and
truss elements for the other members. Again, all brace elements are considered

to connect at the top and bottom flanges of the girders, as shown in Figure A-1.

Concrete Slab

The concrete slab is modeled as a homogeneous elastic plate with no
consideration given to reinforcement or cracking. Cracking is ignored because
under service level loads tensile stresses in the concrete over the negative
moment region rarely exceeds the ultimate tensile stress of the concrete. The
slab consists of shell elements, where each element extends laterally from one
girder to the next and longitudinally from one cross-frame to the next, as shown
in Figure A-2. The shells are modeled at the middepth of the slab. This means
there will be a gap between the shell elements of the slab and the beam
elements of the top flanges of the girders of half the slab thickness plus half the
top flange thickness. To connect the slab to the girders across this gap, short,

extremely stiff beam elements, “shear studs,” if you will, were provided to
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Figure A-2: Elements used to model the slab



123

ensure that plane sections remain plane for the girder-slab system. The slab in
the negative moment regions of an actual bridge is typically not composite with
the girders. Thus the “shear studs” in the negative moment region of the model
provide more stiffness than would be present in the actual bridge. When the
“shear studs” were replaced with elements which allowed the slab to move
relative to the girders, however, the change in bearing reactions was less than
two percent. Because the errors caused by using “shear studs” in the negative
moment region were negligible, the “shear studs” were used over the full length

of the bridge, thereby keeping the model generation simpler.

Steel bent caps

The steel bent caps are modeled like the girders, with shell elements for
the webs and beam elements for the flanges, as shown in Figure A-3. To
provide adequate connectivity between the bent caps and the girders, the bent
caps are given the same depth as the girders — which is generally not quite true
for the bent caps of the real bridges, where the central portion of the bent cap
is somewhat deeper than the girders — and the bent caps are located at the same
height as the girders — which is generally not true of real bridges, where the
bent caps are usually placed about half a foot lower than the girders to allow
splicing the top flanges of the girders together to make the girders continuous.

Where no supports lie between two adjacent girders, the bent cap
elements extend from girder to girder. Where the bent caps are supported
between girders, however, additional sets of nodes are provided at the support
locations, as shown in Figure A-3. Rather than a single set of elements
extending from girder to girder, then, one set of bent cap elements extends from
one girder to the support and a second set of elements extends from the support

to the second girder.
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Figure A-3: Elements used to model the bent caps
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Typical ANSYS input file

The ANSYS models are generated by the PREP7 preprocessor. PREP7
is a general purpose preprocessor for developing structural, thermal, magnetic
field, electric field, fluid and coupled-field models. PREP7 allows for
comments, by means of the /com command, to improve readability of the input
files. To further improve readability and to simplify the coding, PREP7 also
allows for the definition of variables. For the bridge models, variables are used
extensively so that the geometry and member sizes from the bridge are all
defined before the nodal and element generation process. The first data needed
for the model are the number of girders, number of spans and the radius of

curvature at the centerline of the deck.

/com,*** Enter basic girder, span and curvature data ***

Jcom, **% ngr = number of girders ***

jcom, ***% nspn = number of spansg **¥%

/com, *** radc = centerline radius of curvature (inches) *¥**
ngr=5

nspn=3

radc=24000

PREP?7 also allows for the use of arrays. The number of diaphragm bays
and the diaphragm-to-diaphragm spacing for each span are defined in arrays so

variable names can be consistent for bridges with different numbers of spans.

Jcom,*** Dimension arrays for span data ***

*dim,ndf, ,nspn

*dim,dfsps, ,nspn

*dim,dfsp, ,nspn

/com, **%* Enter span data **%

Jcom, **% ndf = diaphragm bays per span #**%*

/com, *** dfsps = median diaphragm spacing per span (inches) #**%*
ndf(1)=10,12,10

dfsps(1)=180,180,180

com, *** Calculate some useful diaphragm data #***
P

jcom, *¥**% ndft = total number of diaphragm bays ***
/com, *** dfsp = diaphragm spacing per span in degrees **%*
ndft=0

*do,i,1,nspn
ndft=ndft+ndf (i)
*enddo
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*do,i,1l,nspn
dfsp(i)=dfsps(i)/radc*180/3.14159

*enddo

For the most part the various cross-sections of the bridge are identical,
so most of the cross-sectional properties can be entered into a simple table.
Although some of these properties are obvious, others need explanation. The
slab overhang is the width of slab, measured from the edge of the slab to the
centerline of the girder, which is cantilevered over the edges of the exterior
girders. The same overhang is provided on both the inside and outside edge of
the bridge. The soffit is the distance from midheight of the slab to the
midheight of the top flange of the girder. The bent cap support separation is
the distance between the centerlines of the two bearings. The bent cap support
cantilever is the distance from the centerline of the deck to the centerline of the
concrete pier, where a positive distance results when the centerline of the pier

is further than the centerline of the bridge from the center of curvature of the

bridge.

/com, *** Enter cross-section dimensions ***

jcom, ®k* sovr = slab overhang (inches) #*#**

jcom, *** sgtg = girder-to-girder spacing (inches) **%*
/com, ***% sth = slab thickness (inches) #***

jcom, *%* soff = soffit (inches) ***

/com, *** wd = web depth (inches) *#**

J/com, **x fw = flange width (inches) **%*

jcom, *%* bcsp = bent cap support separation (inches) #***
jcom, *%* becet = bent cap support cantilever (inchesg) ***
sovr=36

sgtg=96

sth=8

soff=5.5

wd=69

fw=20

besp=72

becet=0

To simplify nodal generation, the following constants are defined.

/com,*** Calculate some useful node numbering constants ***
/com, **x nxs = number of nodes per cross—-section *#**
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jcom, **#* ndn = number of deck nodes w/o k—-brace and bent cap nodes ***
/com, *** nkbn = number of k-brace nodes #***
/com, *¥x% nbcn = number of bent cap nodes ***

nxs=3*ngr+2
ndn=nxs* (ndft+1)
nkbn=2* (ngr—-1)
nbcn=(nspn-1)*4

The only variable section properties are the plate thicknesses. It is necessary
to specify the different plate thickness and to specify where each plate thickness is
to be applied. The thicknesses are grouped into arrays as either flange or web
thicknesses. The locations at which each plate thickness is applied are also specified
in arrays. The location arrays are dimensioned so that a each cell in the array

corresponds to a length of girder between two adjacent cross-frames.

/com, *** Enter number of plate thicknesses **x*

/com, **% nfth = number of different flange thicknesses ***
/com, *¥**% nwth = number of different web thicknesses ***
nfth=3

nwth=2

Jjcom,*** Dimension array for plate data #**%*
*dim, fth, ,nfth

*dim,tflange, ,ndft,ngr

*dim,bflange, ,ndft,ngr

*dim,wth, ,nwth

*dim,web, ,ndft,ngr

Jcom,*** Specify flange and web plate thicknesses ***
Jcom, **% fth = flange thicknesses (inches) #*#*%*
jcom, *** wth = web thicknesses (inches) #*#**
fth(1)=1.25,1.75,2.5

wth(1)=0.5,0.625

/com, *** Flange and web thicknesses to girders by bay and girder #**#*
jcom, *** tflange = top flange thickness number by bay and girder **#*
/com, *** bflange = bottom flange thickness number by bay and girder *#*%*
Jcom, **% web = web thickness number by bay and girder #**
tflange(1,1)=1,1,1,1,1,1,1,1

tflange(9,1)=2
tflange(17,1)=
tflange(25,1)=
tflange(1,2)=1
tflange(9,2)=2
tflange(17,2)=
tflange(25,2)=
tflange(1,3)=1
tflange(9,3)=2
tflange(17,3)=
tflange(25,3)=

B S RS N R
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Additional plate thicknesses are specified for the bent caps and for the web

stiffeners of the longitudinal girders.

bcfw = bent cap flange width #***

Jcom,*** Specify plate sizes for bent caps ***

/com'***
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jcom, *** betf
jcom, **% bcbf
Jcom, ***% becwt
becfw=20

betf=2

bebf=3

becwt=1

bent cap top flange thickness **%*
bent cap bottom flange thickness *#*#*
bent cap web thickness **%*

/jcom,*** Specify plate sizes for girder web stiffeners ***

/com, *** gwsw = girder web stiffener width (inches) ***
com, * k% 8t = girder web stiffener thickness (inchesg) #**%
/ gw g ( )

gwsw=8

gwst=0.5

Because all the bridges to be modeled are curved about a single center of

curvature, it is expedient to define the model in polar coordinates.

/com,*** Set polar coordinate system **%*
local,11,1,0,0,0,0,-90,0

csys, 11

/com, *** Set starting location for nodal generation #**%*
jcom, **% radi = innermost radius of bridge ***

/com, **% hgti = height of center of slab at radi #*#*%*
jcom, **% angi = angle theta at start of bridge **%*
radi=radc-(ngr-1) /2*sgtg-sovr

hgti=0

angi=0

A typical cross-section of nodes is generated at the starting angle theta. The
node points correspond to the endpoints and connection points of the slab, “shear

studs,” flanges and webs.

/com, *** Nodes for typical cross-section *#**
n,1l,radi,angi,hgti

ngen,2,1,1,,,sovr,0,0
ngen,ngr,1,2,,,sqgtqg,0,0
ngen,2,1,ngr+1,,,sovr,0,0
ngen,2,ngr+l,2,ngr+l1,1,0,0,-soff

ngen, 2,ngr,ngr+3,2*ngr+2,1,0,0,-wd

Once the first cross-section is defined, the pattern is copied to generate new

cross-sections at each cross-frame location.

/com,*** Repeat cross-section over length of bridge ***
sdfn=0
*do,i,1l,nspn

ne=sdfn+1

ne=sdfn+nxs
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ngen,ndf(i)+1,nxs,ns,ne,1,0,dfsp(i),0
sdfn=sdfn+nxs*ndf (i)
*enddo

Additional nodes are added at the two end cross-frames because the k-braces
require an extra connection between the diagonal members and the top cross-
member. Additional nodes are also added at the bent cap cross-sections because the
bent caps require an additional connection to the bearings. The additional bent cap
nodes will not be sequential with the other bent cap nodes defined as part of the
typical cross-section. Because the bent cap elements will later be generated in
sequence from the inside to outside of the bridge, the reference numbers of the bent
cap nodes are arranged into an array so that the nodes are in sequence from inside

to outside.

/com,*** Extra k-brace nodes ***
*do,i,1,2
ns=(i-1)*nxs*ndft+ngr+3
ne=ns+ngr-1
ninc=(i-1)*(ngr-1)+ndn+l-ns
ngen, 2,ninc,ns,ne, 1,sqgtg/2,0,0
*enddo

/com,*** Extra bent cap nodes ***
sdfn=nxs*ndf (1)
dref=sgtg*(ngr-1) /2-bcsp/2+becct
*dim, bcnl, ,ngr+2,nspn-1,2
*do,i,1l,nspn-1
nref=sdfn+ngr+3
ninc=(i-~1)*4+ndn+nkbn+l-nref
ns=nref+ninc
ne=ns+1
ngen,2,ninc,nref,, ,dref,0,0
ngen,2,1,ns,, ,becsp,0,0
ngen,2,2,ns,ne,1,0,0,-wd
xbel=dref
xbec2=dref+bcsp
bcnl(1l,4i,1)=nref
benl(1,1i,2)=benl(1,i,1)+ngr
xgrl=0
k=2
*do,j,1,ngr-1
xgr2=xgrl+sgtg
*if,xgrl, 1t,xbcl,then
*if,xbc2,1t,xgr2,then
bcnl(k,i,1)=ns
benl(k,i,2)=ns+2



benl (k+1,i,1)=ne
benl (k+1,1,2)=ne+2
benl(k+2,1i,1)=benl(k-1,4i,1)+1
benl (k+2,i,2)=benl (k+2,1i,1)+ngr
k=k+3
*elseif,xbecl, lt,xgr2
benl(k,i,1)=ns
benl(k,i,2)=ns+2
benl(k+1,i,1)=benl(k-1,1i,1)+1
benl (k+1,1i,2)=benl(k+1,i,1)+ngr
k=k+2
*else
benl(k,i,1)=benl(k-1,1,1)+1
benl(k,1i,2)=benl(k,1i,1)+ngr
k=k+1
*endif
*elgeif,xgrl,lt,xbc2
*if,xbc2,1t,xgr2,then
benl(k,i,1)=ne
benl(k,1i,2)=ne+2
benl(k+1,i,1)=benl(k-1,i,1)+1
benl (k+1,i,2)=benl(k+1,1i,1)+ngr
k=k+2
*else
benl(k,i,1)=bcnl(k-1,1i,1)+1
benl(k,i,2)=benl(k,i,1)+ngr
k=k+1
*endif
*else
benl(k,i,1)=bcnl(k-1,1i,1)+1
benl(k,4i,2)=benl(k,i,1)+ngr
k=k+1
*endif
xgrl=xgr2
*enddo
sdfn=sdfn+nxs*ndf (i+1)
*enddo

To simplify the application of support conditions later, the support nodes at

the ends of the bridge and at the bent caps are grouped into components.

/com,*** Define end support nodes **x
ns=ndft*nxs+2*ngr+3

ne=ns+ngr-1

nsel,s,node, ,ns,ne

ns=2*ngr+3

ne=ns+ngr-1

nsel, a,node, ,ns,ne

cm, endsupps, node

nsel,all

/com,*** Define bent cap support nodes **%*
ns=ndn+nkbn+1
ne=ns+nbcn-1
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nsel, s,node, ,ns,ne
cm, capsupps,node
nsel,all

Three types of elements will be used in the model. Shell elements are used
to model the slab, the girder webs, and the bent cap webs. Beam elements are used
to model the “shear studs,” girder flanges, bent cap flanges, web stiffener plates, and
the top cross-members of the k-braces. Truss elements are used for the x-braces and
for the diagonal and bottom cross-members of the k-braces.
/com,*** 4-node shell elements **%*

et,1,shell63

/com,*** 2-node beam elements *%**
et,2,beamd

jcom, **¥* 2-node truss elements ***
et,3,1ink8

Three material types are used. The slab will be given concrete properties.
The girders, bent caps, and cross-frames will be given steel properties. The “shear
studs,” which do not exist physically, will be given the stiffness of steel but no mass.
/com, *** Concrete ***
mp,ex,1,3120
mp,nuxy,1,0.2
mp,dens, 1,0.000086806
jcom,*** Steel ***
mp,ex,2,29000
mp,nuxy,2,0.3
mp,dens, 2,0.00028356
/com,*** Massless steel **%*
mp,ex,3,29000
mp,nuxy,3,0.3

The next step is to define the member sizes. The slab thickness is simply
entered as a shell thickness. The “shear stud” properties are set to arbitrarily large
values to approximate a fixed connection between the midheight of the slab and the
midheights of the top flanges of the girders. The standard bracing member sizes are

entered directly at this point in the input file since they will never be changed. Next,
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the bent cap properties are entered, where some calculation is necessary for those
components modeled with beam elements. Finally, the girder flange, web, and web

stiffener properties are set.

Jcom,*** Slab thickness ***
r,1,sth

jcom,*** "Shear studs" ***
r,2,1000,1000000,1000000,100,100,0
rmore,0,1000000,0,0

/com,*** X- and K-braces **%
r,3,3.05
r,4,12.4,166,47.2,9.02,12.05,0
rmore,0,1.84

r,5,2.48

/com,*** Bent cap plates ***
area=bctf*bcfw
izz=bcfw*bctf**3/12
iyy=bctf*bcfw**3/12
ixx=izz*4
r,6,area,izz,iyy,bcfw,bctf
rmore,0,ixx

area=bcbf*bcfw
izz=bcfw*bcbf**3/12
iyy=bcbf*bcfw**3/12
ixx=izz*4
r,7,area,izz,iyy,bcfw,bcbf
rmore,0,ixx

r,8,bcwt

/com,*** Girder flange plates **=*

srsf=8

*do,i,1l,nfth
reet=grgf+i
area=fth(i)*fw
izz=fw*fth(i)**3/12
iyy=fth(i)*fw**3/12
ixx=izz*4
r,rset,area,izz,iyy,fw,fth(i)
rmore, 0, ixx

*enddo

/com, *** Girder web plates ***
srsw=nfth+srsf
*do,i,1,nwth
rset=grsw+i
r,rset,wth(i)
*enddo

/com,*** Girder web stiffener plates **x
sres=srsw+nwth
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rset=srss+l

area=gwsw¥*gwst
izz=gwsw*gwst**3/12
iyy=gwst*guwsw**3/12

ixx=izz*4
r,rset,area,izz,iyy,gwsw,gwst
rmore, 0, ixx

At this point, the elements can be defined. The elements for the slab, “shear
studs,” the girders, the k-braces, the x-braces, and the bent caps are defined in

groups and assembled into components.

/com, k% Slab **x%
type, 1
real,l
mat, 1
*do,i,1,ndft
*do,j,1,ngr+l
ni=(i-1)*nxs+j
nj=ni+l
nk=nj+nxs
nl=ni+nxs
e,ni,nj,nk,nl
*enddo
*enddo
esel,s,real,,l
cm,slab,elem
esel,all

Jcom,*** "Shear studg" **%
type, 2
real,2
mat,3
*do,i,1,ndft+1
*do,j,1,ngr
ni=(i-1)*nxs+j+1
nj=ni+ngr+l
e,ni,nj
*enddo
*enddo
esel,s,real,,2
cm, studs,elem
esel,all

/com,*** Girders **%
mat,2
*do,i,1,ndft
*do,j,1,ngr
ni=(i-1)*nxs+j+ngr+2
nj=ni+nxs
nk=nj+ngr
nl=ni+ngr
type, 2



real,tflange(i,j)+srsf
e,ni,nj
real,bflange(i,j)+srsf
e,nl,nk
type,1
real,web(i,j)+srsw
e,ni,nj,nk,nl
*enddo
*enddo
esel,s,real, ,srsf+l,srsf+nfth
cm, flanges,elem
esel,s,real, ,srsw+l,srsw+nwth
cm,webs, elem
esel,all

/com, *** K-braces ***
mat, 3
*do,i,1,2
*do,j,1,ngr-1
ni=(i-1)*nxs*ndft+j+ngr+2
nj=ni+l
nk=nj+ngr
nl=ni+ngr
nm=(i-1)*(ngr-1)+j+ndn
type, 2
real, 4
e,ni,nm
e,nm,nj
type,3
real,3
e,nl,nk
real,5
e,nl,nm
e,nm,nk
*enddo
*enddo
esel,s,real,,3,5
cm, kbraces,elem
esel,all

jcom,*** X-braces **%%*
sdfn=0
*do,i,1,nspn
*do,j,2,ndf (1)
*do,k,1,ngr-1
ni=sdfn+(j-1)*nxs+k+ngr+2
nj=ni+l
nk=nj+ngr
nl=ni+ngr
type,3
real,3
e,ni,nj
e,nl,nk
e,ni,nk
e,nl,nj
type, 2
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real,srss+l
e,ni,nl,nj
e,nj,nk,ni
*enddo
*enddo
sdfn=sdfn+nxs*ndf (i)
*enddo
cmsel,u,kbraces
esel,r,real,,3
cm, xbraces,elem
esel,all
esel, s, real,,srss+l
cm,plates,elem
esel,all

/com, *** Bent caps **%*
*do,i,1,nspn-1
*do,j,1,ngr+l
ni=benl(j,i,1)
nj=becnl (j+1,4i,1)
nk=bcnl (j+1,1i,2)
nl=bcnl(j, i, 2)
type, 2
real, 6
e,ni,nj
real,7
e,nl,nk
type,1
real, 8
e,ni,nj,nk,nl
*enddo
*enddo
esel,s,real,,6,8
cm,bentcaps,elem
esel,all

Next, a couple of bookkeeping tasks must be performed on the elements and
nodes of the model. To reduce the wavefront of the model, and thus the
computation time, the elements are reordered. To orient the nodes in the global
polar coordinate system, the nodes must be rotated since ANSYS defines the nodes

using a cartesian nodal coordinate system.

/com,*** Reorder elements and rotate nodeg **%*
waves
nrotat,all
Roller supports are provided at the ends of the bridge and pinned supports

are provided at the bent cap bearings. Loads, such as dead load here, are applied.
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The model is saved and the preprocessor is exited.

/com,*** Rollers at end supports ***
cmsel, s, endsupps

d,all,uz,0,,,,ux

nsel,all

/com,*** Pins at interior supports ***
cmsel, s, capsupps

d,all,uz,0,,,,ux,uy

nsel,all

/com,*** Apply self-weight **x
acel,,1

save
finish

This completes the model generation process. The model is now ready to be

solved using the ANSYS static solver.



APPENDIX B
VERIFICATION OF
THE MODELS

Introduction

A simple, closed-form solution for the behavior of a complex structure
such as the typical bridge considered in this study does not exist. Consequently,
it is necessary to make simplifications in the analysis of the bridge, such as
modeling the bridge with finite elements. Because of the simplifications
inherent in a finite element analysis, the behavior calculated in the analysis will
not be the true behavior of the bridge. If the bridge is modeled well, however,
the behavior calculated in the analysis will be sufficiently close to the true
behavior. Therefore, it is necessary to verify that the behavior, as calculated by
the finite element analysis for the model chosen to represent the bridge, is close
to the true behavior.

The first stage of the verification process is to select a test structure.
Although it would be ideal to use a typical bridge for the test structure, a simple
closed-form solution for such a complex structure does not exist. Consequently,
there would be no way to calculate the true behavior for comparison against the
behavior predicted by the finite element analysis. It is therefore necessary to
choose the test structure for which a simple-closed solution exists. The test
structure, however, should exhibit the important properties of the bridge which
will ultimately be modeled. The second stage is to find a suitable closed-form

solution against which the results of the finite element model can be compared.
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The closed-form solution should incorporate both bending and torsional effects
on thin-walled open cross-sections. The third stage is to generate a finite
element model of the test structure. The model will be assembled from finite
elements as described in Appendix A. The fourth stage is to compare the
results of the finite element model with the closed-form solutions. The aspects
of the model which are to compared are deflections due to pure bending,

rotations due to pure torsion, bending stresses and torsional warping stresses.

Selection of the test structure

The test structure chosen was a straight concrete slab supported on two
wide-flange steel plate girders, the general cross-section of which is shown in
Figure B-1. Although the dimensions of the model could be easily modified, the

dimensions given in the figure were the only ones used during the verification.

Closed-form model

The second stage in verifying the suitability of the finite element method
is to find a closed-form solution against which the results of the finite element
model can be compared. The closed-form solution should handle bending and
torsion on a thin-walled open cross-section. A method offered by Heins [5]
which is based on earlier work by Kollbrunner and Basler [6] was chosen for
this purpose.

For a straight elastic member, the effects of bending and torsion can be
calculated separately by decomposing forces that do not act through the shear
center of a cross-section into a system of forces acting through the shear center
and torsional moments equal to the magnitudes of the forces times their
respective distances from the shear center, as shown in Figure B-2. The forces

acting through the shear center will produce bending only with no torsion. The
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Figure B-2: Decomposition of a load into pure bending
and pure torsional components
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torsional moments will produce pure (St. Venant’s) torsion and warping torsion
only. The deformations and stresses calculated separately for bending and
torsion can be combined by superposition, given that the material remains
elastic and second order geometric effects are neglected.

Once the shear center is found and the forces and moments are
decomposed into their components acting through the shear center, bending and
torsional analyses can be conducted. The analyses first require the computation
of cross-sectional constants, which are then included in the differential equations
of the closed-form solutions. Next, the differential equations are solved for
deflections, vertical displacements in the case of bending and twist in the case

of torsion, for the given boundary conditions. Finally, stresses are calculated.

Shear center

To separate bending and torsional effects, the shear center must first be
located. A coordinate system for the cross-section is chosen with the origin at
the centroid of the cross-section. The x-axis extends horizontally and the y-axis
extends vertically. The location for the shear center relative to the centroid is

given by Heins [5] as

Xo= U1, —-L,1,)/I}—1I,1L) (B-1)

Y,=0.1,.-1,1)/{}~-1.1) (B-2)
The I, I,, and I, terms are the moments of inertia and cross-product of inertia
which are typically used for bending analysis. In order to make torsional
analysis analogous to bending analysis, a new coordinate w, the sectorial
coordinate, must be introduced. This coordinate when included in the integrals
for the moments of inertia in place of one of the x’s or y’s produces the integrals

for the sectorial products of inertia, I, and I,,,
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The w coordinate for a point on the cross-section is based on a path
integral around the cross-section, namely, it is the integration of a function p
around the cross-section from some arbitrary free end to the point w. An
illustration of the p function is shown in Figure B-3. The p function is the
distance from the centroid to a line tangent to the path, where p is positive if
the path runs counterclockwise around the centroid and is negative otherwise.
Because the cross-section is made up of straight horizontal and vertical plates,
a single p for each entire plate can be found easily: for vertical plates with the
path running from bottom to top, p equals the x-coordinate of the endpoints; for
horizontal plates with the path running from left to right, p equals the negative
of the y-coordinate of the endpoints. To begin the process of finding the w
coordinates, one arbitrarily chosen point has its w coordinate set equal to zero,
usually a free end of one of the elements. This gives an initial value for the
starting point of the first element. To find the w at the ending point of the
element, the p for the element is multiplied by its length and this product is
added to the w of the element’s starting point. This w for the ending of the first
element becomes the w for the starting points of the elements which connect to
it. The process continues until all endpoints have w values.

Since the cross-section is made up of plates of constant thicknesses, the

integrals for the five constants can be converted into simpler algebraic

expressions.
I.=1/3%¢ (yi2 +yy + }’jz) tyLy / n; (B-3)
L,=1/3% @’ +xx +x})t,L, [ n, (B-4)

L, =13 @y, +xy)t;L; [ n; + 1/6 T (xy, + xy) t,.L; / n; (B-5)

I, =1/3 % @w;, + xw) t,L; [ ny + 1/6 & (xw; + xw,) t,L; / n; (B-6)
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p is positive where path runs
counterclockwise around centroid

Endpoint arbitrarily set to w=0

Figure B-3: Magnitude and sign of p
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I, =1/3C Wy, +wy)tL; /n; + 1/6 Z (wy, + wy) t,L, / n; (B-7)
where (x, y, w,) and (x; y,, w;) are the coordinates of the end points, ¢, is the
thickness, L; is the length, and n; is the modular ratio of each plate. The
modular ratio is provided to allow the structure to be composed of two different
materials. To make use of these equations, the cross-section must be divided
into connecting plate elements, as shown in Figure B-4, where each node is
given a reference number. Because the centerlines of the plates must connect,
simplifications must be made at the connections between the tops of the girders
and the slab. The web is considered to extend all the way to the center of the
slab and the top flange is ignored, which is consistent with the methods of both
Basler and Heins. The coordinate system originates at the centroid of the
transformed cross-section. The values needed to calculate the moments of
inertia can be put into a spreadsheet as shown in Table B-1. The values for the

moments of inertia and the location of the shear center are shown in Table B-2.
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Centroid of ~ Shear center
transformed (0", 23.75")
section
13.14"
2 A J, 3 4
\
——T}x
48"
758 9 610

Figure B-4: Discretization of the test structure



Table B-1: Calculation of Moments of Inertia and Shear Center
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Node «x y L, ty P, Wy w

1 96 13.14 0
48 8 -13.14  -631

2 48 13.14 -631
96 8 -13.14  -1261

3 48 13.14 -1892
48 8 -13.14  -631

4 9 13.14 -2523

2 48 13.14 -631
54 0375 48 2592

5 -48  -40.86 1961

3 48 13.14 -1892
54 0375 -48 -2592

6 48  -40.86 -4484

7 -56  -40.86 1634
8 15 4086 327

5 -48  -40.86 1961
8 1.5 4086 327

8 -40  -40.86 2288

9 40 -40.86 -4811
8 1.5 4086 327

6 48  -40.86 -4484
8 1.5 40.86 327

10 56 -40.86 -4157
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Table B-2: Results of Calculations

I, = 131000 in*
L, = 795000 in*
I,= 0in'

I, = -18900000 in*
I, = -341in*
X,= 0in

Y = 23751in

o

Torsional constants
Now that the shear center is located, forces can be decomposed into their
bending and torsional parts and the torsional constants J and Iy, which are St.
Venant’s constant and the warping constant, respectively, can be calculated. St.
Venant’s constant for a cross-section composed of thin rectangular elements is
given as
J=1/3E Ly} [ n, (B-8)
‘The warping constant I, is calculated in a manner similar to that of the other
moments of inertia, namely
Iyw = 1/3Z (W2 + WW, + W) t,L; | n, (B-9)
where the W terms are normalized sectorial coordinates. To find the
normalized sectorial coordinates, first the unnormalized sectorial coordinates
must be found again, but this time relative to the shear center rather than the
centroid. To distinguish the new p and w about the shear center from those
about the centroid, those about the shear center will be designated p, and w,
To normalize the w,’s to form the W,
Wu=ZX[Wu+wy)tL; /n]/Z2¢L;/[/n) —w, (B-10)
The computations are set up in a spreadsheet as shown in Table B-3 and the



results of these computations are shown in Table B-4.

Table B-3: Finite Difference Calculation of Torsional Constants

Node Do L, ty n; w, w,
1 0.0 1019
10.61 48 8 8
2 509 509
1061 96 8 8
3 1528 -509
1061 48 8 8
4 2037 -1019
2 509 509
48 54 0375 1
5 3101 -2083
3 1528 -509
-48 54 0375 1
6 -1064 2083
7 2584 -1566
64.61 8 1.5 1
5 3101 -2083
64.61 8 15 1
8 3618 -2600
9 -1581 2600
64.61 8 1.5 1
6 -1064 2083
64.61 8 1.5 1
10 -547 1566

Table B-4: Results of Torsional Constants Calculations

J =

4134 in*

= 327000000 in*

149
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Bending analysis
As noted earlier bending and torsional analyses are conducted separately,
and the results are then combined by superposition. Bending analysis is
conducted by using standard engineering beam analysis. The results of this
analysis are the bending deflections, as well as the normal and shear stresses
due to bending.

Torsional analysis

The torsional analysis includes the effects of both pure torsion and
warping torsion. Under pure torsion, also known as St. Venant’s torsion, no
restraint to cross-sectional warping is assumed. The cross-section resists the
torsional moment by developing pure torsional shear stresses. The second effect
of torsion is warping torsion. Under warping torsion, restraint of cross-sectional
warping is present. As a result of warping restraint, warping shear stresses and
warping normal stresses will develop to resist the torsional moment, and
torsional stiffness will increase. The pure torsional shear stresses, warping shear
stresses and warping normal stresses combine to resist the applied torsional
moment. Torsional rotations of the cross-section, ¢, are computed by solving
the differential equation of torsion, given by Equation B-11, and applying
appropriate torsional boundary conditions. Torsional shear and normal stresses
can then be computed.

M = GJ ¢' — El,, ¢"'". (B-11)

For a typical bridge, the boundary conditions would consist of end supports
which allow the girders to rotate freely in bending and to warp without restraint
and a distributed torque. For such support conditions and for a uniform torque,

the differential equation can be solved to give
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¢(x) = ma®/GJ [L?/2a*(x/L —x*/L?)—tanh(L /2a) sinh(x/a) (B-12)
+cosh(x/a)—1]
where m is the uniform torque, L is the length and

a’* = El, [ GT (B-13)
The normal warping stress at point n is given by
o =EW,¢" (B-14)

W, has been tabulated for only the few points in the structure where plates have
free ends or connect to other plates, so stresses can only be calculated at

selected locations on the cross-section.

Comparison of results

The finite element model was subjected first to a uniform vertical load
of 1 kip/foot to produce a pure bending response. A comparison of the vertical
deflections predicted by the closed-form beam theory and the finite element
model for the bending case is shown in Figure B-5. The finite element model
follows the shape of the closed-form solution very well. The predicted bending
stresses at the middepths of the bottom flanges are shown in Figure B-6. Again,
correlation between the finite element model and the closed-form solution are
very good.

The finite element model was next subjected to a uniform axial torque
of 1 kip-foot/foot. A comparison of the rotations predicted by the closed-form
method and the finite element model for the torsion case is shown in Figure B-
7. The finite element model again correlates well with theory. A comparison
of the warping normal stresses at the centroid of one of the bottom flanges is
shown in Figure B-8. Again, correlation is excellent. In the finite element
model, however, warping normal stresses at the ends do not equal zero because

the finite element model places the supports at the bottom flanges of the girders
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Figure B-5: Bending Deflections Due to Uniform Load
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Figure B-6: Bottom Flange Bending Stresses Due to Uniform
Load
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Figure B-7: Deck Rotations Due to Uniform Torque
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Figure B-8: Bottom Flange Average Warping Normal

Stresses Due to Uniform Torque
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as they would be in a real bridge rather than at the centroid of the cross-section
as assumed by the closed-form solution. Because the finite element model
represents the flanges as beam elements rather than plate elements, warping‘
stresses at the flange tips must also be compared to verify that the flanges act
like beams in lateral bending. Stresses are not directly available from the finite
element model for the flange tips, but rather, the stresses must be calculated
from the bending moments in the flanges. A comparison of the bottom flange
outer tip warping stresses for the closed-form solution and the finite element
model is shown in Figure B-9. Correlation is not as good as for the flange
centroid warping stresses. The finite element model predicts noticeably higher
stresses than the closed-form solution. Part of this discrepancy could be the
result of nonuniform rotation of the cross-section since the webs are able to
distort in the finite element model but not in the closed-form solution. In such
a case, the finite element model gives a better indication of the flange stresses
than the closed-form solution. The discrepancies in flange tip stresses, however,
do not appear to contribute significantly to differences in the overall behavior
of the section. Consequently, it appears acceptable to model the flanges with
beam elements.

Other cases were analyzed using different cross-sections and boundary
conditions. The other analyses led to similar conclusions about the viability of
this particular modeling method — this particular modeling method produces
acceptable results for a bridge subjected to bending and torsion. The model
may overpredict stresses in the flange tips relative to the closed-form solution,
but such discrepancies do not seem to affect the overall behavior of the cross-
section to any significant extent. It should be noted that discrepancies between
the finite element method and the closed-form solutions do not necessarily arise

because of problems with the finite element models. Rather, the finite element
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Figure B-9: Bottom Flange Outer Tip Warping Normal

Stresses Due to Uniform Torque
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model may produce more accurate results than the closed-form solution. For
example, the finite element model predicts warping normal stresses at the center
of the bottom flanges at the ends of the girders that do not equal zero because
the finite element model applies the supports at the bottom flanges of the
girders where they would be in a real bridge rather than at the centroid of the
cross-section as assumed by the closed-form solution. Likewise, other
assumptions in the closed-form solution, such as the assumption that the
elements are composed of thin plates and that these plates connect to the other
plates at their centerlines, may not properly reflect the conditions in real
bridges. The finite element model is not constrained by these assumptions, so
it is possible that the finite element model is producing more accurate results

than the closed-form solution.



APPENDIX C
THE V-LOAD METHOD

Introduction

The V-load method is an approximate procedure used for the analysis of
horizontally-curved open-framed plate girder bridges. In a 1963 Structural
Report [7], United States Steel presented an approximate analysis technique for
curved plate girder bridges. This original technique proved cumbersome, so a
simplified approach was presented in 1965 [8]. Since the publication of this
simplified approach, which has become known as the V-load method, this
technique has been shown to give good results for open-framed bridges (plate
girders connected by lateral bracing such as floor beams, K-bracing or X-bracing
which lie in a vertical plane, but with no lateral bracing lying in a horizontal
plane in or near the plane of the bottom flanges of the girders) employing either
composite or noncomposite construction and having either radially aligned or
skewed supports [9].

The V-load method simplifies the design of curved girders by treating
them as isolated straight girders analyzed in the same manner as the girders of
straight bridges. In order to incorporate the effects of curvature, the simplified
system of straight girders is analyzed twice — first to determine the approximate
response due to the vertical loads on the simplified straight system and then to
redistribute stresses to reflect the effects of curvature. The simplified straight
girders are first analyzed by subjecting them to the vertical loads. The girders,

159
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because they are assumed to be straight, isolated girders, resist the loads only
through ordinary bending stresses. From these bending stresses an additional
set of artificial loads, the V-loads, are calculated. When applied, these V-loads
alter the stresses in the girders so as to approximate the effects of torsion
caused by the curvature of the bridge. In order to satisfy static equilibrium, the
V-loads are determined such that they are self-equilibrating. This is to say, the
V-loads impose no net external vertical, longitudinal or transverse force on the
bridge. Rather, the V-loads simply produce redistributions of internal stresses
so that the resulting distribution of internal forces approximates the distribution

in a curved bridge.

Torsional stresses in curved girders

A vertical load applied to a horizontally curved girder produces a
torsional effect in the girder. It can be assumed, approximately, that the
moment produced in a beam subject to vertical load is resisted by longitudinal
forces in the flanges only. The magnitude of these longitudinal forces equals M,
the bending moment at the cross-section, divided by 4, the depth between the
centroids of the top and bottom flanges, as shown in Figure C-1. Because of the
curvature of the girder, the opposing faces of a thin section cut from a curved
girder with length dr will not be parallel, as can be seen in Figure C-2. Instead,
there will be a slight angle d¢ between the faces, where d¢ equals df/R and
where R is the radius of curvature of the girder, resulting in a net transverse
force acting on the flange, where the magnitude of this transverse force is M/AR
applied over an arc of length dt. The directions in which these forces act are
such that the forces tend to push the compression flange away from — and
likewise pull the tension flange toward — the center of curvature. Thus, these

forces act as torsional forces on a curved girder, and the distribution of these
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TR~

Mh

Figure C-1: Approximate internal girder forces due to
moment, M



Net Force, M/hR dt

Figure C-2: Unbalanced transverse compression flange
force in a differential section of curved girder
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forces along the girder will follow directly from the distribution of bending

moment due to vertical load.

Development of V-loads

In a curved bridge, diaphragms or cross-braces at regular intervals
provide resistance to the torsional forces in the girders. It is assumed that each
cross-frame will resist the torsional forces developed over a tributary length of
the girder. This tributary length extends from half-way to the previous cross-
frame to half-way to the next cross-frame, so for evenly spaced cross-frames, the
tributary length equals the cross-frame spacing d. It is further assumed that the
bending moment in the girder is constant over this tributary length with a value
equal to the moment at the cross-frame. Thus, the total lateral force that the
cross-frame must resist for each girder flange is Md/hR, as shown in Figure C-3,
where M is the bending moment in the girder at the cross-frame. Since these
forces are applied as equal and opposite forces — they are applied as a couple
— to the girder flanges to resist the girder torsion, a counterbalancing couple
must be generated in the cross-frame to satisfy equilibrium of the cross-frame.
This counterbalancing couple consists of vertical shear forces V in the cross-
frame. These vertical shear forces are transferred to the girders, which resist
these forces in bending, as shown in Figure C-4. Thus, the rigid cross-frames
have the effect of transforming torsional forces on the girders into concentrated
vertical forces on the girders.

The distribution of the forces is such that the shear forces on the outside
girder will tend to increase the moment in that girder, while the shear forces on
the inside girder will tend to decrease the moment in that girder. In a two-
girder system, the lateral flange forces will equal M,d/hR and Md/hR for the
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Girder 2 Girder 1
(exterior) (interior)
| |
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- |
| de/hR |
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Figure C-3: Distribution of transverse flange forces to
the cross-frame
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Figure C-4: Equilibrating shear forces between the
cross-frame and the girders
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inside girder and outside girder, respectively. Moment equilibrium in the cross-

frame gives

VD = (Md / hR + Md | hR) h (C-1)

or

V=M, +M)/RD)/d=M,+M)/k (C-2)
where D is the spacing between the innermost and outermost girders and k
equals RD/d. These V-loads are calculated and applied to each girder at each
cross-frame with the V-loads applied in such a way so as to increase moment
on the outside girder and decrease moment on the inside girder. This means
that in the positive moment region, for example, the outside girder is loaded
with V' and the inside girder is loaded with -V, where a downward load is
considered positive. Each girder is now analyzed again with the V-loads applied
in addition to the vertical bridge loads to produce a new moment diagram. For
the two-girder system, each girder must resist half of the torsion imposed in the
cross-frame since the system is statically determinate with respect to the
distribution of the vertical shear loads between the girders. In multigirder
systems, the loads must be distributed based on both equilibrium and
compatibility. It is reasonable to assume that the cross-frame rotates essentially
as a rigid body. If each girder has approximately the same bending stiffness,
then the shear forces will be distributed linearly from one end of the cross-
frame to the other. For multigirder systems, then, the V-load formula becomes

V=IM/Ck (C-3)
where C is a constant reflecting the effect of distributing V-loads to a number
of girders. The values for C are tabulated below in Table C-1 for a few systems
with different numbers of girders, where these girders are equally spaced across

the cross-section.
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Table C-1: Coefficients C for V-load Calculations

No. of Girders Coefficient, C
2 1
1
10/9
5/4
7/5
14/9
12/7
15/8
10 165/81

O 0 N S Ut W

These coefficients scale the V-loads to the correct magnitude for the outside
and inside girders. The V-loads for the interior girders are found from linear
interpolation between the exterior and interior girders. For example, for a four-
girder system the V-load applied on each girder at a cross-frame in the positive
moment region will be, from inside to outside, -V, -¥/3, V/3 and V, respectively,
as shown in Figure C-5, where a downward force is considered positive.

As an additional note on the V-load method, although this description
of the V-load method has assumed noncomposite plate girders, finite element
models have shown that the V-load method also produces good results for
bridges with composite girders [9], so that this study will not consider composite

girders a violation of the assumptions.
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Girder 4 Girder 3 Girder 2 Girder 1
(interior)

Figure C-5: Distribution of equilibrating V-load vertical
shear forces to the girders
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